Spaces:
Paused
Paused
| import os | |
| from trainer import Trainer, TrainerArgs | |
| from TTS.config import BaseAudioConfig, BaseDatasetConfig | |
| from TTS.tts.configs.speedy_speech_config import SpeedySpeechConfig | |
| from TTS.tts.datasets import load_tts_samples | |
| from TTS.tts.models.forward_tts import ForwardTTS | |
| from TTS.tts.utils.speakers import SpeakerManager | |
| from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
| from TTS.utils.audio import AudioProcessor | |
| output_path = os.path.dirname(os.path.abspath(__file__)) | |
| dataset_config = BaseDatasetConfig(formatter="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/")) | |
| audio_config = BaseAudioConfig( | |
| sample_rate=22050, | |
| do_trim_silence=True, | |
| trim_db=23.0, | |
| signal_norm=False, | |
| mel_fmin=0.0, | |
| mel_fmax=8000, | |
| spec_gain=1.0, | |
| log_func="np.log", | |
| ref_level_db=20, | |
| preemphasis=0.0, | |
| ) | |
| config = SpeedySpeechConfig( | |
| run_name="fast_pitch_ljspeech", | |
| audio=audio_config, | |
| batch_size=32, | |
| eval_batch_size=16, | |
| num_loader_workers=8, | |
| num_eval_loader_workers=4, | |
| compute_input_seq_cache=True, | |
| precompute_num_workers=4, | |
| run_eval=True, | |
| test_delay_epochs=-1, | |
| epochs=1000, | |
| text_cleaner="english_cleaners", | |
| use_phonemes=True, | |
| phoneme_language="en-us", | |
| phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), | |
| print_step=50, | |
| print_eval=False, | |
| mixed_precision=False, | |
| min_text_len=0, | |
| max_text_len=500, | |
| min_audio_len=0, | |
| max_audio_len=500000, | |
| output_path=output_path, | |
| datasets=[dataset_config], | |
| use_speaker_embedding=True, | |
| ) | |
| # INITIALIZE THE AUDIO PROCESSOR | |
| # Audio processor is used for feature extraction and audio I/O. | |
| # It mainly serves to the dataloader and the training loggers. | |
| ap = AudioProcessor.init_from_config(config) | |
| # INITIALIZE THE TOKENIZER | |
| # Tokenizer is used to convert text to sequences of token IDs. | |
| # If characters are not defined in the config, default characters are passed to the config | |
| tokenizer, config = TTSTokenizer.init_from_config(config) | |
| # LOAD DATA SAMPLES | |
| # Each sample is a list of ```[text, audio_file_path, speaker_name]``` | |
| # You can define your custom sample loader returning the list of samples. | |
| # Or define your custom formatter and pass it to the `load_tts_samples`. | |
| # Check `TTS.tts.datasets.load_tts_samples` for more details. | |
| train_samples, eval_samples = load_tts_samples( | |
| dataset_config, | |
| eval_split=True, | |
| eval_split_max_size=config.eval_split_max_size, | |
| eval_split_size=config.eval_split_size, | |
| ) | |
| # init speaker manager for multi-speaker training | |
| # it maps speaker-id to speaker-name in the model and data-loader | |
| speaker_manager = SpeakerManager() | |
| speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") | |
| config.model_args.num_speakers = speaker_manager.num_speakers | |
| # init model | |
| model = ForwardTTS(config, ap, tokenizer, speaker_manager) | |
| # INITIALIZE THE TRAINER | |
| # Trainer provides a generic API to train all the 🐸TTS models with all its perks like mixed-precision training, | |
| # distributed training, etc. | |
| trainer = Trainer( | |
| TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples | |
| ) | |
| # AND... 3,2,1... 🚀 | |
| trainer.fit() | |