Spaces:
Paused
Paused
| import os | |
| # Trainer: Where the ✨️ happens. | |
| # TrainingArgs: Defines the set of arguments of the Trainer. | |
| from trainer import Trainer, TrainerArgs | |
| # GlowTTSConfig: all model related values for training, validating and testing. | |
| from TTS.tts.configs.glow_tts_config import GlowTTSConfig | |
| # BaseDatasetConfig: defines name, formatter and path of the dataset. | |
| from TTS.tts.configs.shared_configs import BaseAudioConfig, BaseDatasetConfig, CharactersConfig | |
| from TTS.tts.datasets import load_tts_samples | |
| from TTS.tts.models.glow_tts import GlowTTS | |
| from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
| from TTS.utils.audio import AudioProcessor | |
| # we use the same path as this script as our training folder. | |
| output_path = "/storage/output-glowtts/" | |
| # DEFINE DATASET CONFIG | |
| # Set LJSpeech as our target dataset and define its path. | |
| # You can also use a simple Dict to define the dataset and pass it to your custom formatter. | |
| dataset_config = BaseDatasetConfig( | |
| formatter="bel_tts_formatter", | |
| meta_file_train="ipa_final_dataset.csv", | |
| path=os.path.join(output_path, "/storage/filtered_dataset/"), | |
| ) | |
| characters = CharactersConfig( | |
| characters_class="TTS.tts.utils.text.characters.Graphemes", | |
| pad="_", | |
| eos="~", | |
| bos="^", | |
| blank="@", | |
| characters="Iabdfgijklmnprstuvxzɔɛɣɨɫɱʂʐʲˈː̯͡β", | |
| punctuations="!,.?: -‒–—…", | |
| ) | |
| audio_config = BaseAudioConfig( | |
| mel_fmin=50, | |
| mel_fmax=8000, | |
| hop_length=256, | |
| stats_path="/storage/TTS/scale_stats.npy", | |
| ) | |
| # INITIALIZE THE TRAINING CONFIGURATION | |
| # Configure the model. Every config class inherits the BaseTTSConfig. | |
| config = GlowTTSConfig( | |
| batch_size=96, | |
| eval_batch_size=32, | |
| num_loader_workers=8, | |
| num_eval_loader_workers=8, | |
| use_noise_augment=True, | |
| run_eval=True, | |
| test_delay_epochs=-1, | |
| epochs=1000, | |
| print_step=50, | |
| print_eval=True, | |
| output_path=output_path, | |
| add_blank=True, | |
| datasets=[dataset_config], | |
| characters=characters, | |
| enable_eos_bos_chars=True, | |
| mixed_precision=False, | |
| save_step=10000, | |
| save_n_checkpoints=2, | |
| save_best_after=5000, | |
| text_cleaner="no_cleaners", | |
| audio=audio_config, | |
| test_sentences=[], | |
| ) | |
| if __name__ == "__main__": | |
| # INITIALIZE THE AUDIO PROCESSOR | |
| # Audio processor is used for feature extraction and audio I/O. | |
| # It mainly serves to the dataloader and the training loggers. | |
| ap = AudioProcessor.init_from_config(config) | |
| # INITIALIZE THE TOKENIZER | |
| # Tokenizer is used to convert text to sequences of token IDs. | |
| # If characters are not defined in the config, default characters are passed to the config | |
| tokenizer, config = TTSTokenizer.init_from_config(config) | |
| # LOAD DATA SAMPLES | |
| # Each sample is a list of ```[text, audio_file_path, speaker_name]``` | |
| # You can define your custom sample loader returning the list of samples. | |
| # Or define your custom formatter and pass it to the `load_tts_samples`. | |
| # Check `TTS.tts.datasets.load_tts_samples` for more details. | |
| train_samples, eval_samples = load_tts_samples( | |
| dataset_config, | |
| eval_split=True, | |
| eval_split_max_size=config.eval_split_max_size, | |
| eval_split_size=config.eval_split_size, | |
| ) | |
| # INITIALIZE THE MODEL | |
| # Models take a config object and a speaker manager as input | |
| # Config defines the details of the model like the number of layers, the size of the embedding, etc. | |
| # Speaker manager is used by multi-speaker models. | |
| model = GlowTTS(config, ap, tokenizer, speaker_manager=None) | |
| # INITIALIZE THE TRAINER | |
| # Trainer provides a generic API to train all the 🐸TTS models with all its perks like mixed-precision training, | |
| # distributed training, etc. | |
| trainer = Trainer( | |
| TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples | |
| ) | |
| # AND... 3,2,1... 🚀 | |
| trainer.fit() | |