Spaces:
Paused
Paused
| #!/usr/bin/env python3 | |
| # -*- coding: utf-8 -*- | |
| import argparse | |
| import sys | |
| from argparse import RawTextHelpFormatter | |
| # pylint: disable=redefined-outer-name, unused-argument | |
| from pathlib import Path | |
| from TTS.api import TTS | |
| from TTS.utils.manage import ModelManager | |
| from TTS.utils.synthesizer import Synthesizer | |
| def str2bool(v): | |
| if isinstance(v, bool): | |
| return v | |
| if v.lower() in ("yes", "true", "t", "y", "1"): | |
| return True | |
| if v.lower() in ("no", "false", "f", "n", "0"): | |
| return False | |
| raise argparse.ArgumentTypeError("Boolean value expected.") | |
| def main(): | |
| description = """Synthesize speech on command line. | |
| You can either use your trained model or choose a model from the provided list. | |
| If you don't specify any models, then it uses LJSpeech based English model. | |
| ## Example Runs | |
| ### Single Speaker Models | |
| - List provided models: | |
| ``` | |
| $ tts --list_models | |
| ``` | |
| - Query info for model info by idx: | |
| ``` | |
| $ tts --model_info_by_idx "<model_type>/<model_query_idx>" | |
| ``` | |
| - Query info for model info by full name: | |
| ``` | |
| $ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>" | |
| ``` | |
| - Run TTS with default models: | |
| ``` | |
| $ tts --text "Text for TTS" | |
| ``` | |
| - Run a TTS model with its default vocoder model: | |
| ``` | |
| $ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name> | |
| ``` | |
| - Run with specific TTS and vocoder models from the list: | |
| ``` | |
| $ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --vocoder_name "<model_type>/<language>/<dataset>/<model_name>" --output_path | |
| ``` | |
| - Run your own TTS model (Using Griffin-Lim Vocoder): | |
| ``` | |
| $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav | |
| ``` | |
| - Run your own TTS and Vocoder models: | |
| ``` | |
| $ tts --text "Text for TTS" --model_path path/to/config.json --config_path path/to/model.pth --out_path output/path/speech.wav | |
| --vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json | |
| ``` | |
| ### Multi-speaker Models | |
| - List the available speakers and choose as <speaker_id> among them: | |
| ``` | |
| $ tts --model_name "<language>/<dataset>/<model_name>" --list_speaker_idxs | |
| ``` | |
| - Run the multi-speaker TTS model with the target speaker ID: | |
| ``` | |
| $ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --speaker_idx <speaker_id> | |
| ``` | |
| - Run your own multi-speaker TTS model: | |
| ``` | |
| $ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/config.json --config_path path/to/model.pth --speakers_file_path path/to/speaker.json --speaker_idx <speaker_id> | |
| ``` | |
| ### Voice Conversion Models | |
| ``` | |
| $ tts --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --source_wav <path/to/speaker/wav> --target_wav <path/to/reference/wav> | |
| ``` | |
| """ | |
| # We remove Markdown code formatting programmatically here to allow us to copy-and-paste from main README to keep | |
| # documentation in sync more easily. | |
| parser = argparse.ArgumentParser( | |
| description=description.replace(" ```\n", ""), | |
| formatter_class=RawTextHelpFormatter, | |
| ) | |
| parser.add_argument( | |
| "--list_models", | |
| type=str2bool, | |
| nargs="?", | |
| const=True, | |
| default=False, | |
| help="list available pre-trained TTS and vocoder models.", | |
| ) | |
| parser.add_argument( | |
| "--model_info_by_idx", | |
| type=str, | |
| default=None, | |
| help="model info using query format: <model_type>/<model_query_idx>", | |
| ) | |
| parser.add_argument( | |
| "--model_info_by_name", | |
| type=str, | |
| default=None, | |
| help="model info using query format: <model_type>/<language>/<dataset>/<model_name>", | |
| ) | |
| parser.add_argument("--text", type=str, default=None, help="Text to generate speech.") | |
| # Args for running pre-trained TTS models. | |
| parser.add_argument( | |
| "--model_name", | |
| type=str, | |
| default="tts_models/en/ljspeech/tacotron2-DDC", | |
| help="Name of one of the pre-trained TTS models in format <language>/<dataset>/<model_name>", | |
| ) | |
| parser.add_argument( | |
| "--vocoder_name", | |
| type=str, | |
| default=None, | |
| help="Name of one of the pre-trained vocoder models in format <language>/<dataset>/<model_name>", | |
| ) | |
| # Args for running custom models | |
| parser.add_argument("--config_path", default=None, type=str, help="Path to model config file.") | |
| parser.add_argument( | |
| "--model_path", | |
| type=str, | |
| default=None, | |
| help="Path to model file.", | |
| ) | |
| parser.add_argument( | |
| "--out_path", | |
| type=str, | |
| default="tts_output.wav", | |
| help="Output wav file path.", | |
| ) | |
| parser.add_argument("--use_cuda", type=bool, help="Run model on CUDA.", default=False) | |
| parser.add_argument( | |
| "--vocoder_path", | |
| type=str, | |
| help="Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).", | |
| default=None, | |
| ) | |
| parser.add_argument("--vocoder_config_path", type=str, help="Path to vocoder model config file.", default=None) | |
| parser.add_argument( | |
| "--encoder_path", | |
| type=str, | |
| help="Path to speaker encoder model file.", | |
| default=None, | |
| ) | |
| parser.add_argument("--encoder_config_path", type=str, help="Path to speaker encoder config file.", default=None) | |
| # args for coqui studio | |
| parser.add_argument( | |
| "--cs_model", | |
| type=str, | |
| help="Name of the 🐸Coqui Studio model. Available models are `XTTS`, `XTTS-multilingual`, `V1`.", | |
| ) | |
| parser.add_argument( | |
| "--emotion", | |
| type=str, | |
| help="Emotion to condition the model with. Only available for 🐸Coqui Studio `V1` model.", | |
| default=None, | |
| ) | |
| parser.add_argument( | |
| "--language", | |
| type=str, | |
| help="Language to condition the model with. Only available for 🐸Coqui Studio `XTTS-multilingual` model.", | |
| default=None, | |
| ) | |
| # args for multi-speaker synthesis | |
| parser.add_argument("--speakers_file_path", type=str, help="JSON file for multi-speaker model.", default=None) | |
| parser.add_argument("--language_ids_file_path", type=str, help="JSON file for multi-lingual model.", default=None) | |
| parser.add_argument( | |
| "--speaker_idx", | |
| type=str, | |
| help="Target speaker ID for a multi-speaker TTS model.", | |
| default=None, | |
| ) | |
| parser.add_argument( | |
| "--language_idx", | |
| type=str, | |
| help="Target language ID for a multi-lingual TTS model.", | |
| default=None, | |
| ) | |
| parser.add_argument( | |
| "--speaker_wav", | |
| nargs="+", | |
| help="wav file(s) to condition a multi-speaker TTS model with a Speaker Encoder. You can give multiple file paths. The d_vectors is computed as their average.", | |
| default=None, | |
| ) | |
| parser.add_argument("--gst_style", help="Wav path file for GST style reference.", default=None) | |
| parser.add_argument( | |
| "--capacitron_style_wav", type=str, help="Wav path file for Capacitron prosody reference.", default=None | |
| ) | |
| parser.add_argument("--capacitron_style_text", type=str, help="Transcription of the reference.", default=None) | |
| parser.add_argument( | |
| "--list_speaker_idxs", | |
| help="List available speaker ids for the defined multi-speaker model.", | |
| type=str2bool, | |
| nargs="?", | |
| const=True, | |
| default=False, | |
| ) | |
| parser.add_argument( | |
| "--list_language_idxs", | |
| help="List available language ids for the defined multi-lingual model.", | |
| type=str2bool, | |
| nargs="?", | |
| const=True, | |
| default=False, | |
| ) | |
| # aux args | |
| parser.add_argument( | |
| "--save_spectogram", | |
| type=bool, | |
| help="If true save raw spectogram for further (vocoder) processing in out_path.", | |
| default=False, | |
| ) | |
| parser.add_argument( | |
| "--reference_wav", | |
| type=str, | |
| help="Reference wav file to convert in the voice of the speaker_idx or speaker_wav", | |
| default=None, | |
| ) | |
| parser.add_argument( | |
| "--reference_speaker_idx", | |
| type=str, | |
| help="speaker ID of the reference_wav speaker (If not provided the embedding will be computed using the Speaker Encoder).", | |
| default=None, | |
| ) | |
| parser.add_argument( | |
| "--progress_bar", | |
| type=str2bool, | |
| help="If true shows a progress bar for the model download. Defaults to True", | |
| default=True, | |
| ) | |
| # voice conversion args | |
| parser.add_argument( | |
| "--source_wav", | |
| type=str, | |
| default=None, | |
| help="Original audio file to convert in the voice of the target_wav", | |
| ) | |
| parser.add_argument( | |
| "--target_wav", | |
| type=str, | |
| default=None, | |
| help="Target audio file to convert in the voice of the source_wav", | |
| ) | |
| parser.add_argument( | |
| "--voice_dir", | |
| type=str, | |
| default=None, | |
| help="Voice dir for tortoise model", | |
| ) | |
| args = parser.parse_args() | |
| # print the description if either text or list_models is not set | |
| check_args = [ | |
| args.text, | |
| args.list_models, | |
| args.list_speaker_idxs, | |
| args.list_language_idxs, | |
| args.reference_wav, | |
| args.model_info_by_idx, | |
| args.model_info_by_name, | |
| args.source_wav, | |
| args.target_wav, | |
| ] | |
| if not any(check_args): | |
| parser.parse_args(["-h"]) | |
| # load model manager | |
| path = Path(__file__).parent / "../.models.json" | |
| manager = ModelManager(path, progress_bar=args.progress_bar) | |
| api = TTS() | |
| tts_path = None | |
| tts_config_path = None | |
| speakers_file_path = None | |
| language_ids_file_path = None | |
| vocoder_path = None | |
| vocoder_config_path = None | |
| encoder_path = None | |
| encoder_config_path = None | |
| vc_path = None | |
| vc_config_path = None | |
| model_dir = None | |
| # CASE1 #list : list pre-trained TTS models | |
| if args.list_models: | |
| manager.add_cs_api_models(api.list_models()) | |
| manager.list_models() | |
| sys.exit() | |
| # CASE2 #info : model info for pre-trained TTS models | |
| if args.model_info_by_idx: | |
| model_query = args.model_info_by_idx | |
| manager.model_info_by_idx(model_query) | |
| sys.exit() | |
| if args.model_info_by_name: | |
| model_query_full_name = args.model_info_by_name | |
| manager.model_info_by_full_name(model_query_full_name) | |
| sys.exit() | |
| # CASE3: TTS with coqui studio models | |
| if "coqui_studio" in args.model_name: | |
| print(" > Using 🐸Coqui Studio model: ", args.model_name) | |
| api = TTS(model_name=args.model_name, cs_api_model=args.cs_model) | |
| api.tts_to_file(text=args.text, emotion=args.emotion, file_path=args.out_path, language=args.language) | |
| print(" > Saving output to ", args.out_path) | |
| return | |
| # CASE4: load pre-trained model paths | |
| if args.model_name is not None and not args.model_path: | |
| model_path, config_path, model_item = manager.download_model(args.model_name) | |
| # tts model | |
| if model_item["model_type"] == "tts_models": | |
| tts_path = model_path | |
| tts_config_path = config_path | |
| if "default_vocoder" in model_item: | |
| args.vocoder_name = model_item["default_vocoder"] if args.vocoder_name is None else args.vocoder_name | |
| # voice conversion model | |
| if model_item["model_type"] == "voice_conversion_models": | |
| vc_path = model_path | |
| vc_config_path = config_path | |
| # tts model with multiple files to be loaded from the directory path | |
| if model_item.get("author", None) == "fairseq" or isinstance(model_item["model_url"], list): | |
| model_dir = model_path | |
| tts_path = None | |
| tts_config_path = None | |
| args.vocoder_name = None | |
| # load vocoder | |
| if args.vocoder_name is not None and not args.vocoder_path: | |
| vocoder_path, vocoder_config_path, _ = manager.download_model(args.vocoder_name) | |
| # CASE5: set custom model paths | |
| if args.model_path is not None: | |
| tts_path = args.model_path | |
| tts_config_path = args.config_path | |
| speakers_file_path = args.speakers_file_path | |
| language_ids_file_path = args.language_ids_file_path | |
| if args.vocoder_path is not None: | |
| vocoder_path = args.vocoder_path | |
| vocoder_config_path = args.vocoder_config_path | |
| if args.encoder_path is not None: | |
| encoder_path = args.encoder_path | |
| encoder_config_path = args.encoder_config_path | |
| # load models | |
| synthesizer = Synthesizer( | |
| tts_path, | |
| tts_config_path, | |
| speakers_file_path, | |
| language_ids_file_path, | |
| vocoder_path, | |
| vocoder_config_path, | |
| encoder_path, | |
| encoder_config_path, | |
| vc_path, | |
| vc_config_path, | |
| model_dir, | |
| args.voice_dir, | |
| args.use_cuda, | |
| ) | |
| # query speaker ids of a multi-speaker model. | |
| if args.list_speaker_idxs: | |
| print( | |
| " > Available speaker ids: (Set --speaker_idx flag to one of these values to use the multi-speaker model." | |
| ) | |
| print(synthesizer.tts_model.speaker_manager.name_to_id) | |
| return | |
| # query langauge ids of a multi-lingual model. | |
| if args.list_language_idxs: | |
| print( | |
| " > Available language ids: (Set --language_idx flag to one of these values to use the multi-lingual model." | |
| ) | |
| print(synthesizer.tts_model.language_manager.name_to_id) | |
| return | |
| # check the arguments against a multi-speaker model. | |
| if synthesizer.tts_speakers_file and (not args.speaker_idx and not args.speaker_wav): | |
| print( | |
| " [!] Looks like you use a multi-speaker model. Define `--speaker_idx` to " | |
| "select the target speaker. You can list the available speakers for this model by `--list_speaker_idxs`." | |
| ) | |
| return | |
| # RUN THE SYNTHESIS | |
| if args.text: | |
| print(" > Text: {}".format(args.text)) | |
| # kick it | |
| if tts_path is not None: | |
| wav = synthesizer.tts( | |
| args.text, | |
| speaker_name=args.speaker_idx, | |
| language_name=args.language_idx, | |
| speaker_wav=args.speaker_wav, | |
| reference_wav=args.reference_wav, | |
| style_wav=args.capacitron_style_wav, | |
| style_text=args.capacitron_style_text, | |
| reference_speaker_name=args.reference_speaker_idx, | |
| ) | |
| elif vc_path is not None: | |
| wav = synthesizer.voice_conversion( | |
| source_wav=args.source_wav, | |
| target_wav=args.target_wav, | |
| ) | |
| elif model_dir is not None: | |
| wav = synthesizer.tts(args.text, speaker_name=args.speaker_idx) | |
| # save the results | |
| print(" > Saving output to {}".format(args.out_path)) | |
| synthesizer.save_wav(wav, args.out_path) | |
| if __name__ == "__main__": | |
| main() | |