Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	File size: 33,633 Bytes
			
			| ee6e328 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 | # coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Marian model. """
import tempfile
import unittest
from huggingface_hub.hf_api import list_models
from transformers import MarianConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
    import torch
    from transformers import (
        AutoConfig,
        AutoModelWithLMHead,
        AutoTokenizer,
        MarianModel,
        MarianMTModel,
        TranslationPipeline,
    )
    from transformers.models.marian.convert_marian_to_pytorch import (
        ORG_NAME,
        convert_hf_name_to_opus_name,
        convert_opus_name_to_hf_name,
    )
    from transformers.models.marian.modeling_marian import (
        MarianDecoder,
        MarianEncoder,
        MarianForCausalLM,
        shift_tokens_right,
    )
def prepare_marian_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
    head_mask=None,
    decoder_head_mask=None,
    cross_attn_head_mask=None,
):
    if attention_mask is None:
        attention_mask = input_ids.ne(config.pad_token_id)
    if decoder_attention_mask is None:
        decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
    if head_mask is None:
        head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
    if decoder_head_mask is None:
        decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
    if cross_attn_head_mask is None:
        cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": attention_mask,
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
        "cross_attn_head_mask": cross_attn_head_mask,
    }
class MarianModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
        decoder_start_token_id=3,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.decoder_start_token_id = decoder_start_token_id
        # forcing a certain token to be generated, sets all other tokens to -inf
        # if however the token to be generated is already at -inf then it can lead token
        # `nan` values and thus break generation
        self.forced_bos_token_id = None
        self.forced_eos_token_id = None
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
            3,
        )
        input_ids[:, -1] = self.eos_token_id  # Eos Token
        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        config = self.get_config()
        inputs_dict = prepare_marian_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict
    def get_config(self):
        return MarianConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
            forced_bos_token_id=self.forced_bos_token_id,
            forced_eos_token_id=self.forced_eos_token_id,
        )
    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict
    def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = MarianModel(config=config).get_decoder().to(torch_device).eval()
        input_ids = inputs_dict["input_ids"]
        attention_mask = inputs_dict["attention_mask"]
        head_mask = inputs_dict["head_mask"]
        # first forward pass
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
        output, past_key_values = outputs.to_tuple()
        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)
        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]
        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
    def check_encoder_decoder_model_standalone(self, config, inputs_dict):
        model = MarianModel(config=config).to(torch_device).eval()
        outputs = model(**inputs_dict)
        encoder_last_hidden_state = outputs.encoder_last_hidden_state
        last_hidden_state = outputs.last_hidden_state
        with tempfile.TemporaryDirectory() as tmpdirname:
            encoder = model.get_encoder()
            encoder.save_pretrained(tmpdirname)
            encoder = MarianEncoder.from_pretrained(tmpdirname).to(torch_device)
        encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
            0
        ]
        self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)
        with tempfile.TemporaryDirectory() as tmpdirname:
            decoder = model.get_decoder()
            decoder.save_pretrained(tmpdirname)
            decoder = MarianDecoder.from_pretrained(tmpdirname).to(torch_device)
        last_hidden_state_2 = decoder(
            input_ids=inputs_dict["decoder_input_ids"],
            attention_mask=inputs_dict["decoder_attention_mask"],
            encoder_hidden_states=encoder_last_hidden_state,
            encoder_attention_mask=inputs_dict["attention_mask"],
        )[0]
        self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
@require_torch
class MarianModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (MarianModel, MarianMTModel) if is_torch_available() else ()
    all_generative_model_classes = (MarianMTModel,) if is_torch_available() else ()
    pipeline_model_mapping = (
        {
            "conversational": MarianMTModel,
            "feature-extraction": MarianModel,
            "summarization": MarianMTModel,
            "text-generation": MarianForCausalLM,
            "text2text-generation": MarianMTModel,
            "translation": MarianMTModel,
        }
        if is_torch_available()
        else {}
    )
    is_encoder_decoder = True
    fx_compatible = True
    test_pruning = False
    test_missing_keys = False
    def setUp(self):
        self.model_tester = MarianModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MarianConfig)
    def test_config(self):
        self.config_tester.run_common_tests()
    def test_save_load_strict(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])
    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
    def test_encoder_decoder_model_standalone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
    def test_generate_fp16(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        model = MarianMTModel(config).eval().to(torch_device)
        if torch_device == "cuda":
            model.half()
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
    def test_share_encoder_decoder_embeddings(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        # check if embeddings are shared by default
        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIs(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens)
            self.assertIs(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight)
        # check if embeddings are not shared when config.share_encoder_decoder_embeddings = False
        config.share_encoder_decoder_embeddings = False
        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsNot(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens)
            self.assertIsNot(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight)
        # check if a model with shared embeddings can be saved and loaded with share_encoder_decoder_embeddings = False
        config, _ = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname, share_encoder_decoder_embeddings=False)
                self.assertIsNot(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens)
                self.assertIsNot(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight)
    def test_resize_decoder_token_embeddings(self):
        config, _ = self.model_tester.prepare_config_and_inputs()
        # check if resize_decoder_token_embeddings raises an error when embeddings are shared
        for model_class in self.all_model_classes:
            model = model_class(config)
            with self.assertRaises(ValueError):
                model.resize_decoder_token_embeddings(config.vocab_size + 1)
        # check if decoder embeddings are resized when config.share_encoder_decoder_embeddings = False
        config.share_encoder_decoder_embeddings = False
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.resize_decoder_token_embeddings(config.vocab_size + 1)
            self.assertEqual(model.get_decoder().embed_tokens.weight.shape, (config.vocab_size + 1, config.d_model))
        # check if lm_head is also resized
        config, _ = self.model_tester.prepare_config_and_inputs()
        config.share_encoder_decoder_embeddings = False
        model = MarianMTModel(config)
        model.resize_decoder_token_embeddings(config.vocab_size + 1)
        self.assertEqual(model.lm_head.weight.shape, (config.vocab_size + 1, config.d_model))
    def test_tie_word_embeddings_decoder(self):
        pass
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
    """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise
    except Exception:
        pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
        if a.numel() > 100:
            msg = f"tensor values are {pct_different:.1%} percent different."
        else:
            msg = f"{a} != {b}"
        if prefix:
            msg = prefix + ": " + msg
        raise AssertionError(msg)
def _long_tensor(tok_lst):
    return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
class ModelManagementTests(unittest.TestCase):
    @slow
    @require_torch
    def test_model_names(self):
        model_list = list_models()
        model_ids = [x.modelId for x in model_list if x.modelId.startswith(ORG_NAME)]
        bad_model_ids = [mid for mid in model_ids if "+" in model_ids]
        self.assertListEqual([], bad_model_ids)
        self.assertGreater(len(model_ids), 500)
@require_torch
@require_sentencepiece
@require_tokenizers
class MarianIntegrationTest(unittest.TestCase):
    src = "en"
    tgt = "de"
    src_text = [
        "I am a small frog.",
        "Now I can forget the 100 words of german that I know.",
        "Tom asked his teacher for advice.",
        "That's how I would do it.",
        "Tom really admired Mary's courage.",
        "Turn around and close your eyes.",
    ]
    expected_text = [
        "Ich bin ein kleiner Frosch.",
        "Jetzt kann ich die 100 Wörter des Deutschen vergessen, die ich kenne.",
        "Tom bat seinen Lehrer um Rat.",
        "So würde ich das machen.",
        "Tom bewunderte Marias Mut wirklich.",
        "Drehen Sie sich um und schließen Sie die Augen.",
    ]
    # ^^ actual C++ output differs slightly: (1) des Deutschen removed, (2) ""-> "O", (3) tun -> machen
    @classmethod
    def setUpClass(cls) -> None:
        cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}"
        return cls
    @cached_property
    def tokenizer(self):
        return AutoTokenizer.from_pretrained(self.model_name)
    @property
    def eos_token_id(self) -> int:
        return self.tokenizer.eos_token_id
    @cached_property
    def model(self):
        model: MarianMTModel = AutoModelWithLMHead.from_pretrained(self.model_name).to(torch_device)
        c = model.config
        self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]])
        self.assertEqual(c.max_length, 512)
        self.assertEqual(c.decoder_start_token_id, c.pad_token_id)
        if torch_device == "cuda":
            return model.half()
        else:
            return model
    def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
        generated_words = self.translate_src_text(**tokenizer_kwargs)
        self.assertListEqual(self.expected_text, generated_words)
    def translate_src_text(self, **tokenizer_kwargs):
        model_inputs = self.tokenizer(self.src_text, padding=True, return_tensors="pt", **tokenizer_kwargs).to(
            torch_device
        )
        self.assertEqual(self.model.device, model_inputs.input_ids.device)
        generated_ids = self.model.generate(
            model_inputs.input_ids,
            attention_mask=model_inputs.attention_mask,
            num_beams=2,
            max_length=128,
            renormalize_logits=True,  # Marian should always renormalize its logits. See #25459
        )
        generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        return generated_words
@require_sentencepiece
@require_tokenizers
class TestMarian_EN_DE_More(MarianIntegrationTest):
    @slow
    def test_forward(self):
        src, tgt = ["I am a small frog"], ["Ich bin ein kleiner Frosch."]
        expected_ids = [38, 121, 14, 697, 38848, 0]
        model_inputs = self.tokenizer(src, text_target=tgt, return_tensors="pt").to(torch_device)
        self.assertListEqual(expected_ids, model_inputs.input_ids[0].tolist())
        desired_keys = {
            "input_ids",
            "attention_mask",
            "labels",
        }
        self.assertSetEqual(desired_keys, set(model_inputs.keys()))
        model_inputs["decoder_input_ids"] = shift_tokens_right(
            model_inputs.labels, self.tokenizer.pad_token_id, self.model.config.decoder_start_token_id
        )
        model_inputs["return_dict"] = True
        model_inputs["use_cache"] = False
        with torch.no_grad():
            outputs = self.model(**model_inputs)
        max_indices = outputs.logits.argmax(-1)
        self.tokenizer.batch_decode(max_indices)
    def test_unk_support(self):
        t = self.tokenizer
        ids = t(["||"], return_tensors="pt").to(torch_device).input_ids[0].tolist()
        expected = [t.unk_token_id, t.unk_token_id, t.eos_token_id]
        self.assertEqual(expected, ids)
    def test_pad_not_split(self):
        input_ids_w_pad = self.tokenizer(["I am a small frog <pad>"], return_tensors="pt").input_ids[0].tolist()
        expected_w_pad = [38, 121, 14, 697, 38848, self.tokenizer.pad_token_id, 0]  # pad
        self.assertListEqual(expected_w_pad, input_ids_w_pad)
    @slow
    def test_batch_generation_en_de(self):
        self._assert_generated_batch_equal_expected()
    def test_auto_config(self):
        config = AutoConfig.from_pretrained(self.model_name)
        self.assertIsInstance(config, MarianConfig)
@require_sentencepiece
@require_tokenizers
class TestMarian_EN_FR(MarianIntegrationTest):
    src = "en"
    tgt = "fr"
    src_text = [
        "I am a small frog.",
        "Now I can forget the 100 words of german that I know.",
    ]
    expected_text = [
        "Je suis une petite grenouille.",
        "Maintenant, je peux oublier les 100 mots d'allemand que je connais.",
    ]
    @slow
    def test_batch_generation_en_fr(self):
        self._assert_generated_batch_equal_expected()
@require_sentencepiece
@require_tokenizers
class TestMarian_FR_EN(MarianIntegrationTest):
    src = "fr"
    tgt = "en"
    src_text = [
        "Donnez moi le micro.",
        "Tom et Mary étaient assis à une table.",  # Accents
    ]
    expected_text = [
        "Give me the microphone.",
        "Tom and Mary were sitting at a table.",
    ]
    @slow
    def test_batch_generation_fr_en(self):
        self._assert_generated_batch_equal_expected()
@require_sentencepiece
@require_tokenizers
class TestMarian_RU_FR(MarianIntegrationTest):
    src = "ru"
    tgt = "fr"
    src_text = ["Он показал мне рукопись своей новой пьесы."]
    expected_text = ["Il m'a montré le manuscrit de sa nouvelle pièce."]
    @slow
    def test_batch_generation_ru_fr(self):
        self._assert_generated_batch_equal_expected()
@require_sentencepiece
@require_tokenizers
class TestMarian_MT_EN(MarianIntegrationTest):
    """Cover low resource/high perplexity setting. This breaks without adjust_logits_generation overwritten"""
    src = "mt"
    tgt = "en"
    src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."]
    expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."]
    @slow
    def test_batch_generation_mt_en(self):
        self._assert_generated_batch_equal_expected()
@require_sentencepiece
@require_tokenizers
class TestMarian_en_zh(MarianIntegrationTest):
    src = "en"
    tgt = "zh"
    src_text = ["My name is Wolfgang and I live in Berlin"]
    expected_text = ["我叫沃尔夫冈 我住在柏林"]
    @slow
    def test_batch_generation_eng_zho(self):
        self._assert_generated_batch_equal_expected()
@require_sentencepiece
@require_tokenizers
class TestMarian_en_ROMANCE(MarianIntegrationTest):
    """Multilingual on target side."""
    src = "en"
    tgt = "ROMANCE"
    src_text = [
        ">>fr<< Don't spend so much time watching TV.",
        ">>pt<< Your message has been sent.",
        ">>es<< He's two years older than me.",
    ]
    expected_text = [
        "Ne passez pas autant de temps à regarder la télé.",
        "A sua mensagem foi enviada.",
        "Es dos años más viejo que yo.",
    ]
    @slow
    def test_batch_generation_en_ROMANCE_multi(self):
        self._assert_generated_batch_equal_expected()
    @slow
    def test_pipeline(self):
        device = 0 if torch_device == "cuda" else -1
        pipeline = TranslationPipeline(self.model, self.tokenizer, framework="pt", device=device)
        output = pipeline(self.src_text)
        self.assertEqual(self.expected_text, [x["translation_text"] for x in output])
@require_sentencepiece
@require_tokenizers
class TestMarian_FI_EN_V2(MarianIntegrationTest):
    src = "fi"
    tgt = "en"
    src_text = [
        "minä tykkään kirjojen lukemisesta",
        "Pidän jalkapallon katsomisesta",
    ]
    expected_text = ["I like to read books", "I like watching football"]
    @classmethod
    def setUpClass(cls) -> None:
        cls.model_name = "hf-internal-testing/test-opus-tatoeba-fi-en-v2"
        return cls
    @slow
    def test_batch_generation_fi_en(self):
        self._assert_generated_batch_equal_expected()
@require_torch
class TestConversionUtils(unittest.TestCase):
    def test_renaming_multilingual(self):
        old_names = [
            "opus-mt-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
            "opus-mt-cmn+cn-fi",  # no group
            "opus-mt-en-de",  # standard name
            "opus-mt-en-de",  # standard name
        ]
        expected = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
        self.assertListEqual(expected, [convert_opus_name_to_hf_name(x) for x in old_names])
    def test_undoing_renaming(self):
        hf_names = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
        converted_opus_names = [convert_hf_name_to_opus_name(x) for x in hf_names]
        expected_opus_names = [
            "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
            "cmn+cn-fi",
            "en-de",  # standard name
            "en-de",
        ]
        self.assertListEqual(expected_opus_names, converted_opus_names)
class MarianStandaloneDecoderModelTester:
    def __init__(
        self,
        parent,
        vocab_size=99,
        batch_size=13,
        d_model=16,
        decoder_seq_length=7,
        is_training=True,
        is_decoder=True,
        use_attention_mask=True,
        use_cache=False,
        use_labels=True,
        decoder_start_token_id=2,
        decoder_ffn_dim=32,
        decoder_layers=2,
        encoder_attention_heads=4,
        decoder_attention_heads=4,
        max_position_embeddings=30,
        is_encoder_decoder=False,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.decoder_seq_length = decoder_seq_length
        # For common tests
        self.seq_length = self.decoder_seq_length
        self.is_training = is_training
        self.use_attention_mask = use_attention_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.d_model = d_model
        self.hidden_size = d_model
        self.num_hidden_layers = decoder_layers
        self.decoder_layers = decoder_layers
        self.decoder_ffn_dim = decoder_ffn_dim
        self.encoder_attention_heads = encoder_attention_heads
        self.decoder_attention_heads = decoder_attention_heads
        self.num_attention_heads = decoder_attention_heads
        self.eos_token_id = eos_token_id
        self.bos_token_id = bos_token_id
        self.pad_token_id = pad_token_id
        self.decoder_start_token_id = decoder_start_token_id
        self.use_cache = use_cache
        self.max_position_embeddings = max_position_embeddings
        self.is_encoder_decoder = is_encoder_decoder
        self.scope = None
        self.decoder_key_length = decoder_seq_length
        self.base_model_out_len = 2
        self.decoder_attention_idx = 1
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
        attention_mask = None
        if self.use_attention_mask:
            attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
        lm_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
        config = MarianConfig(
            vocab_size=self.vocab_size,
            d_model=self.d_model,
            decoder_layers=self.decoder_layers,
            decoder_ffn_dim=self.decoder_ffn_dim,
            encoder_attention_heads=self.encoder_attention_heads,
            decoder_attention_heads=self.decoder_attention_heads,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            use_cache=self.use_cache,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
            max_position_embeddings=self.max_position_embeddings,
            is_encoder_decoder=self.is_encoder_decoder,
        )
        return (
            config,
            input_ids,
            attention_mask,
            lm_labels,
        )
    def create_and_check_decoder_model_past(
        self,
        config,
        input_ids,
        attention_mask,
        lm_labels,
    ):
        config.use_cache = True
        model = MarianDecoder(config=config).to(torch_device).eval()
        # first forward pass
        outputs = model(input_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids)
        outputs_no_past = model(input_ids, use_cache=False)
        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
        past_key_values = outputs["past_key_values"]
        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        output_from_no_past = model(next_input_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
        # test that outputs are equal for slice
        assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
    def create_and_check_decoder_model_attention_mask_past(
        self,
        config,
        input_ids,
        attention_mask,
        lm_labels,
    ):
        model = MarianDecoder(config=config).to(torch_device).eval()
        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
        half_seq_length = input_ids.shape[-1] // 2
        attn_mask[:, half_seq_length:] = 0
        # first forward pass
        past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]
        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
        )
        # get two different outputs
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]
        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
        # test that outputs are equal for slice
        assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            attention_mask,
            lm_labels,
        ) = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
        }
        return config, inputs_dict
@require_torch
class MarianStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (MarianDecoder, MarianForCausalLM) if is_torch_available() else ()
    all_generative_model_classes = (MarianForCausalLM,) if is_torch_available() else ()
    test_pruning = False
    is_encoder_decoder = False
    def setUp(
        self,
    ):
        self.model_tester = MarianStandaloneDecoderModelTester(self, is_training=False)
        self.config_tester = ConfigTester(self, config_class=MarianConfig)
    def test_config(self):
        self.config_tester.run_common_tests()
    def test_decoder_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
    def test_decoder_model_attn_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)
    def test_retain_grad_hidden_states_attentions(self):
        # decoder cannot keep gradients
        return
    @unittest.skip("The model doesn't support left padding")  # and it's not used enough to be worth fixing :)
    def test_left_padding_compatibility(self):
        pass
 |