Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	File size: 25,177 Bytes
			
			a153039  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646  | 
								import sys
import time
from dataclasses import dataclass, field
from typing import Dict, List, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from coqpit import Coqpit
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from TTS.tts.utils.visual import plot_spectrogram
from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_fsspec
from TTS.vocoder.datasets.wavernn_dataset import WaveRNNDataset
from TTS.vocoder.layers.losses import WaveRNNLoss
from TTS.vocoder.models.base_vocoder import BaseVocoder
from TTS.vocoder.utils.distribution import sample_from_discretized_mix_logistic, sample_from_gaussian
def stream(string, variables):
    sys.stdout.write(f"\r{string}" % variables)
# pylint: disable=abstract-method
# relates https://github.com/pytorch/pytorch/issues/42305
class ResBlock(nn.Module):
    def __init__(self, dims):
        super().__init__()
        self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
        self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
        self.batch_norm1 = nn.BatchNorm1d(dims)
        self.batch_norm2 = nn.BatchNorm1d(dims)
    def forward(self, x):
        residual = x
        x = self.conv1(x)
        x = self.batch_norm1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = self.batch_norm2(x)
        return x + residual
class MelResNet(nn.Module):
    def __init__(self, num_res_blocks, in_dims, compute_dims, res_out_dims, pad):
        super().__init__()
        k_size = pad * 2 + 1
        self.conv_in = nn.Conv1d(in_dims, compute_dims, kernel_size=k_size, bias=False)
        self.batch_norm = nn.BatchNorm1d(compute_dims)
        self.layers = nn.ModuleList()
        for _ in range(num_res_blocks):
            self.layers.append(ResBlock(compute_dims))
        self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1)
    def forward(self, x):
        x = self.conv_in(x)
        x = self.batch_norm(x)
        x = F.relu(x)
        for f in self.layers:
            x = f(x)
        x = self.conv_out(x)
        return x
class Stretch2d(nn.Module):
    def __init__(self, x_scale, y_scale):
        super().__init__()
        self.x_scale = x_scale
        self.y_scale = y_scale
    def forward(self, x):
        b, c, h, w = x.size()
        x = x.unsqueeze(-1).unsqueeze(3)
        x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale)
        return x.view(b, c, h * self.y_scale, w * self.x_scale)
class UpsampleNetwork(nn.Module):
    def __init__(
        self,
        feat_dims,
        upsample_scales,
        compute_dims,
        num_res_blocks,
        res_out_dims,
        pad,
        use_aux_net,
    ):
        super().__init__()
        self.total_scale = np.cumproduct(upsample_scales)[-1]
        self.indent = pad * self.total_scale
        self.use_aux_net = use_aux_net
        if use_aux_net:
            self.resnet = MelResNet(num_res_blocks, feat_dims, compute_dims, res_out_dims, pad)
            self.resnet_stretch = Stretch2d(self.total_scale, 1)
        self.up_layers = nn.ModuleList()
        for scale in upsample_scales:
            k_size = (1, scale * 2 + 1)
            padding = (0, scale)
            stretch = Stretch2d(scale, 1)
            conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False)
            conv.weight.data.fill_(1.0 / k_size[1])
            self.up_layers.append(stretch)
            self.up_layers.append(conv)
    def forward(self, m):
        if self.use_aux_net:
            aux = self.resnet(m).unsqueeze(1)
            aux = self.resnet_stretch(aux)
            aux = aux.squeeze(1)
            aux = aux.transpose(1, 2)
        else:
            aux = None
        m = m.unsqueeze(1)
        for f in self.up_layers:
            m = f(m)
        m = m.squeeze(1)[:, :, self.indent : -self.indent]
        return m.transpose(1, 2), aux
class Upsample(nn.Module):
    def __init__(self, scale, pad, num_res_blocks, feat_dims, compute_dims, res_out_dims, use_aux_net):
        super().__init__()
        self.scale = scale
        self.pad = pad
        self.indent = pad * scale
        self.use_aux_net = use_aux_net
        self.resnet = MelResNet(num_res_blocks, feat_dims, compute_dims, res_out_dims, pad)
    def forward(self, m):
        if self.use_aux_net:
            aux = self.resnet(m)
            aux = torch.nn.functional.interpolate(aux, scale_factor=self.scale, mode="linear", align_corners=True)
            aux = aux.transpose(1, 2)
        else:
            aux = None
        m = torch.nn.functional.interpolate(m, scale_factor=self.scale, mode="linear", align_corners=True)
        m = m[:, :, self.indent : -self.indent]
        m = m * 0.045  # empirically found
        return m.transpose(1, 2), aux
@dataclass
class WavernnArgs(Coqpit):
    """🐸 WaveRNN model arguments.
    rnn_dims (int):
        Number of hidden channels in RNN layers. Defaults to 512.
    fc_dims (int):
        Number of hidden channels in fully-conntected layers. Defaults to 512.
    compute_dims (int):
        Number of hidden channels in the feature ResNet. Defaults to 128.
    res_out_dim (int):
        Number of hidden channels in the feature ResNet output. Defaults to 128.
    num_res_blocks (int):
        Number of residual blocks in the ResNet. Defaults to 10.
    use_aux_net (bool):
        enable/disable the feature ResNet. Defaults to True.
    use_upsample_net (bool):
        enable/ disable the upsampling networl. If False, basic upsampling is used. Defaults to True.
    upsample_factors (list):
        Upsampling factors. The multiply of the values must match the `hop_length`. Defaults to ```[4, 8, 8]```.
    mode (str):
        Output mode of the WaveRNN vocoder. `mold` for Mixture of Logistic Distribution, `gauss` for a single
        Gaussian Distribution and `bits` for quantized bits as the model's output.
    mulaw (bool):
        enable / disable the use of Mulaw quantization for training. Only applicable if `mode == 'bits'`. Defaults
        to `True`.
    pad (int):
            Padding applied to the input feature frames against the convolution layers of the feature network.
            Defaults to 2.
    """
    rnn_dims: int = 512
    fc_dims: int = 512
    compute_dims: int = 128
    res_out_dims: int = 128
    num_res_blocks: int = 10
    use_aux_net: bool = True
    use_upsample_net: bool = True
    upsample_factors: List[int] = field(default_factory=lambda: [4, 8, 8])
    mode: str = "mold"  # mold [string], gauss [string], bits [int]
    mulaw: bool = True  # apply mulaw if mode is bits
    pad: int = 2
    feat_dims: int = 80
class Wavernn(BaseVocoder):
    def __init__(self, config: Coqpit):
        """🐸 WaveRNN model.
        Original paper - https://arxiv.org/abs/1802.08435
        Official implementation - https://github.com/fatchord/WaveRNN
        Args:
            config (Coqpit): [description]
        Raises:
            RuntimeError: [description]
        Examples:
            >>> from TTS.vocoder.configs import WavernnConfig
            >>> config = WavernnConfig()
            >>> model = Wavernn(config)
        Paper Abstract:
            Sequential models achieve state-of-the-art results in audio, visual and textual domains with respect to
            both estimating the data distribution and generating high-quality samples. Efficient sampling for this
            class of models has however remained an elusive problem. With a focus on text-to-speech synthesis, we
            describe a set of general techniques for reducing sampling time while maintaining high output quality.
            We first describe a single-layer recurrent neural network, the WaveRNN, with a dual softmax layer that
            matches the quality of the state-of-the-art WaveNet model. The compact form of the network makes it
            possible to generate 24kHz 16-bit audio 4x faster than real time on a GPU. Second, we apply a weight
            pruning technique to reduce the number of weights in the WaveRNN. We find that, for a constant number of
            parameters, large sparse networks perform better than small dense networks and this relationship holds for
            sparsity levels beyond 96%. The small number of weights in a Sparse WaveRNN makes it possible to sample
            high-fidelity audio on a mobile CPU in real time. Finally, we propose a new generation scheme based on
            subscaling that folds a long sequence into a batch of shorter sequences and allows one to generate multiple
            samples at once. The Subscale WaveRNN produces 16 samples per step without loss of quality and offers an
            orthogonal method for increasing sampling efficiency.
        """
        super().__init__(config)
        if isinstance(self.args.mode, int):
            self.n_classes = 2**self.args.mode
        elif self.args.mode == "mold":
            self.n_classes = 3 * 10
        elif self.args.mode == "gauss":
            self.n_classes = 2
        else:
            raise RuntimeError("Unknown model mode value - ", self.args.mode)
        self.ap = AudioProcessor(**config.audio.to_dict())
        self.aux_dims = self.args.res_out_dims // 4
        if self.args.use_upsample_net:
            assert (
                np.cumproduct(self.args.upsample_factors)[-1] == config.audio.hop_length
            ), " [!] upsample scales needs to be equal to hop_length"
            self.upsample = UpsampleNetwork(
                self.args.feat_dims,
                self.args.upsample_factors,
                self.args.compute_dims,
                self.args.num_res_blocks,
                self.args.res_out_dims,
                self.args.pad,
                self.args.use_aux_net,
            )
        else:
            self.upsample = Upsample(
                config.audio.hop_length,
                self.args.pad,
                self.args.num_res_blocks,
                self.args.feat_dims,
                self.args.compute_dims,
                self.args.res_out_dims,
                self.args.use_aux_net,
            )
        if self.args.use_aux_net:
            self.I = nn.Linear(self.args.feat_dims + self.aux_dims + 1, self.args.rnn_dims)
            self.rnn1 = nn.GRU(self.args.rnn_dims, self.args.rnn_dims, batch_first=True)
            self.rnn2 = nn.GRU(self.args.rnn_dims + self.aux_dims, self.args.rnn_dims, batch_first=True)
            self.fc1 = nn.Linear(self.args.rnn_dims + self.aux_dims, self.args.fc_dims)
            self.fc2 = nn.Linear(self.args.fc_dims + self.aux_dims, self.args.fc_dims)
            self.fc3 = nn.Linear(self.args.fc_dims, self.n_classes)
        else:
            self.I = nn.Linear(self.args.feat_dims + 1, self.args.rnn_dims)
            self.rnn1 = nn.GRU(self.args.rnn_dims, self.args.rnn_dims, batch_first=True)
            self.rnn2 = nn.GRU(self.args.rnn_dims, self.args.rnn_dims, batch_first=True)
            self.fc1 = nn.Linear(self.args.rnn_dims, self.args.fc_dims)
            self.fc2 = nn.Linear(self.args.fc_dims, self.args.fc_dims)
            self.fc3 = nn.Linear(self.args.fc_dims, self.n_classes)
    def forward(self, x, mels):
        bsize = x.size(0)
        h1 = torch.zeros(1, bsize, self.args.rnn_dims).to(x.device)
        h2 = torch.zeros(1, bsize, self.args.rnn_dims).to(x.device)
        mels, aux = self.upsample(mels)
        if self.args.use_aux_net:
            aux_idx = [self.aux_dims * i for i in range(5)]
            a1 = aux[:, :, aux_idx[0] : aux_idx[1]]
            a2 = aux[:, :, aux_idx[1] : aux_idx[2]]
            a3 = aux[:, :, aux_idx[2] : aux_idx[3]]
            a4 = aux[:, :, aux_idx[3] : aux_idx[4]]
        x = (
            torch.cat([x.unsqueeze(-1), mels, a1], dim=2)
            if self.args.use_aux_net
            else torch.cat([x.unsqueeze(-1), mels], dim=2)
        )
        x = self.I(x)
        res = x
        self.rnn1.flatten_parameters()
        x, _ = self.rnn1(x, h1)
        x = x + res
        res = x
        x = torch.cat([x, a2], dim=2) if self.args.use_aux_net else x
        self.rnn2.flatten_parameters()
        x, _ = self.rnn2(x, h2)
        x = x + res
        x = torch.cat([x, a3], dim=2) if self.args.use_aux_net else x
        x = F.relu(self.fc1(x))
        x = torch.cat([x, a4], dim=2) if self.args.use_aux_net else x
        x = F.relu(self.fc2(x))
        return self.fc3(x)
    def inference(self, mels, batched=None, target=None, overlap=None):
        self.eval()
        output = []
        start = time.time()
        rnn1 = self.get_gru_cell(self.rnn1)
        rnn2 = self.get_gru_cell(self.rnn2)
        with torch.no_grad():
            if isinstance(mels, np.ndarray):
                mels = torch.FloatTensor(mels).to(str(next(self.parameters()).device))
            if mels.ndim == 2:
                mels = mels.unsqueeze(0)
            wave_len = (mels.size(-1) - 1) * self.config.audio.hop_length
            mels = self.pad_tensor(mels.transpose(1, 2), pad=self.args.pad, side="both")
            mels, aux = self.upsample(mels.transpose(1, 2))
            if batched:
                mels = self.fold_with_overlap(mels, target, overlap)
                if aux is not None:
                    aux = self.fold_with_overlap(aux, target, overlap)
            b_size, seq_len, _ = mels.size()
            h1 = torch.zeros(b_size, self.args.rnn_dims).type_as(mels)
            h2 = torch.zeros(b_size, self.args.rnn_dims).type_as(mels)
            x = torch.zeros(b_size, 1).type_as(mels)
            if self.args.use_aux_net:
                d = self.aux_dims
                aux_split = [aux[:, :, d * i : d * (i + 1)] for i in range(4)]
            for i in range(seq_len):
                m_t = mels[:, i, :]
                if self.args.use_aux_net:
                    a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split)
                x = torch.cat([x, m_t, a1_t], dim=1) if self.args.use_aux_net else torch.cat([x, m_t], dim=1)
                x = self.I(x)
                h1 = rnn1(x, h1)
                x = x + h1
                inp = torch.cat([x, a2_t], dim=1) if self.args.use_aux_net else x
                h2 = rnn2(inp, h2)
                x = x + h2
                x = torch.cat([x, a3_t], dim=1) if self.args.use_aux_net else x
                x = F.relu(self.fc1(x))
                x = torch.cat([x, a4_t], dim=1) if self.args.use_aux_net else x
                x = F.relu(self.fc2(x))
                logits = self.fc3(x)
                if self.args.mode == "mold":
                    sample = sample_from_discretized_mix_logistic(logits.unsqueeze(0).transpose(1, 2))
                    output.append(sample.view(-1))
                    x = sample.transpose(0, 1).type_as(mels)
                elif self.args.mode == "gauss":
                    sample = sample_from_gaussian(logits.unsqueeze(0).transpose(1, 2))
                    output.append(sample.view(-1))
                    x = sample.transpose(0, 1).type_as(mels)
                elif isinstance(self.args.mode, int):
                    posterior = F.softmax(logits, dim=1)
                    distrib = torch.distributions.Categorical(posterior)
                    sample = 2 * distrib.sample().float() / (self.n_classes - 1.0) - 1.0
                    output.append(sample)
                    x = sample.unsqueeze(-1)
                else:
                    raise RuntimeError("Unknown model mode value - ", self.args.mode)
                if i % 100 == 0:
                    self.gen_display(i, seq_len, b_size, start)
        output = torch.stack(output).transpose(0, 1)
        output = output.cpu()
        if batched:
            output = output.numpy()
            output = output.astype(np.float64)
            output = self.xfade_and_unfold(output, target, overlap)
        else:
            output = output[0]
        if self.args.mulaw and isinstance(self.args.mode, int):
            output = AudioProcessor.mulaw_decode(output, self.args.mode)
        # Fade-out at the end to avoid signal cutting out suddenly
        fade_out = np.linspace(1, 0, 20 * self.config.audio.hop_length)
        output = output[:wave_len]
        if wave_len > len(fade_out):
            output[-20 * self.config.audio.hop_length :] *= fade_out
        self.train()
        return output
    def gen_display(self, i, seq_len, b_size, start):
        gen_rate = (i + 1) / (time.time() - start) * b_size / 1000
        realtime_ratio = gen_rate * 1000 / self.config.audio.sample_rate
        stream(
            "%i/%i -- batch_size: %i -- gen_rate: %.1f kHz -- x_realtime: %.1f  ",
            (i * b_size, seq_len * b_size, b_size, gen_rate, realtime_ratio),
        )
    def fold_with_overlap(self, x, target, overlap):
        """Fold the tensor with overlap for quick batched inference.
            Overlap will be used for crossfading in xfade_and_unfold()
        Args:
            x (tensor)    : Upsampled conditioning features.
                            shape=(1, timesteps, features)
            target (int)  : Target timesteps for each index of batch
            overlap (int) : Timesteps for both xfade and rnn warmup
        Return:
            (tensor) : shape=(num_folds, target + 2 * overlap, features)
        Details:
            x = [[h1, h2, ... hn]]
            Where each h is a vector of conditioning features
            Eg: target=2, overlap=1 with x.size(1)=10
            folded = [[h1, h2, h3, h4],
                      [h4, h5, h6, h7],
                      [h7, h8, h9, h10]]
        """
        _, total_len, features = x.size()
        # Calculate variables needed
        num_folds = (total_len - overlap) // (target + overlap)
        extended_len = num_folds * (overlap + target) + overlap
        remaining = total_len - extended_len
        # Pad if some time steps poking out
        if remaining != 0:
            num_folds += 1
            padding = target + 2 * overlap - remaining
            x = self.pad_tensor(x, padding, side="after")
        folded = torch.zeros(num_folds, target + 2 * overlap, features).to(x.device)
        # Get the values for the folded tensor
        for i in range(num_folds):
            start = i * (target + overlap)
            end = start + target + 2 * overlap
            folded[i] = x[:, start:end, :]
        return folded
    @staticmethod
    def get_gru_cell(gru):
        gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size)
        gru_cell.weight_hh.data = gru.weight_hh_l0.data
        gru_cell.weight_ih.data = gru.weight_ih_l0.data
        gru_cell.bias_hh.data = gru.bias_hh_l0.data
        gru_cell.bias_ih.data = gru.bias_ih_l0.data
        return gru_cell
    @staticmethod
    def pad_tensor(x, pad, side="both"):
        # NB - this is just a quick method i need right now
        # i.e., it won't generalise to other shapes/dims
        b, t, c = x.size()
        total = t + 2 * pad if side == "both" else t + pad
        padded = torch.zeros(b, total, c).to(x.device)
        if side in ("before", "both"):
            padded[:, pad : pad + t, :] = x
        elif side == "after":
            padded[:, :t, :] = x
        return padded
    @staticmethod
    def xfade_and_unfold(y, target, overlap):
        """Applies a crossfade and unfolds into a 1d array.
        Args:
            y (ndarry)    : Batched sequences of audio samples
                            shape=(num_folds, target + 2 * overlap)
                            dtype=np.float64
            overlap (int) : Timesteps for both xfade and rnn warmup
        Return:
            (ndarry) : audio samples in a 1d array
                       shape=(total_len)
                       dtype=np.float64
        Details:
            y = [[seq1],
                 [seq2],
                 [seq3]]
            Apply a gain envelope at both ends of the sequences
            y = [[seq1_in, seq1_target, seq1_out],
                 [seq2_in, seq2_target, seq2_out],
                 [seq3_in, seq3_target, seq3_out]]
            Stagger and add up the groups of samples:
            [seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...]
        """
        num_folds, length = y.shape
        target = length - 2 * overlap
        total_len = num_folds * (target + overlap) + overlap
        # Need some silence for the rnn warmup
        silence_len = overlap // 2
        fade_len = overlap - silence_len
        silence = np.zeros((silence_len), dtype=np.float64)
        # Equal power crossfade
        t = np.linspace(-1, 1, fade_len, dtype=np.float64)
        fade_in = np.sqrt(0.5 * (1 + t))
        fade_out = np.sqrt(0.5 * (1 - t))
        # Concat the silence to the fades
        fade_in = np.concatenate([silence, fade_in])
        fade_out = np.concatenate([fade_out, silence])
        # Apply the gain to the overlap samples
        y[:, :overlap] *= fade_in
        y[:, -overlap:] *= fade_out
        unfolded = np.zeros((total_len), dtype=np.float64)
        # Loop to add up all the samples
        for i in range(num_folds):
            start = i * (target + overlap)
            end = start + target + 2 * overlap
            unfolded[start:end] += y[i]
        return unfolded
    def load_checkpoint(
        self, config, checkpoint_path, eval=False, cache=False
    ):  # pylint: disable=unused-argument, redefined-builtin
        state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
        self.load_state_dict(state["model"])
        if eval:
            self.eval()
            assert not self.training
    def train_step(self, batch: Dict, criterion: Dict) -> Tuple[Dict, Dict]:
        mels = batch["input"]
        waveform = batch["waveform"]
        waveform_coarse = batch["waveform_coarse"]
        y_hat = self.forward(waveform, mels)
        if isinstance(self.args.mode, int):
            y_hat = y_hat.transpose(1, 2).unsqueeze(-1)
        else:
            waveform_coarse = waveform_coarse.float()
        waveform_coarse = waveform_coarse.unsqueeze(-1)
        # compute losses
        loss_dict = criterion(y_hat, waveform_coarse)
        return {"model_output": y_hat}, loss_dict
    def eval_step(self, batch: Dict, criterion: Dict) -> Tuple[Dict, Dict]:
        return self.train_step(batch, criterion)
    @torch.no_grad()
    def test(
        self, assets: Dict, test_loader: "DataLoader", output: Dict  # pylint: disable=unused-argument
    ) -> Tuple[Dict, Dict]:
        ap = self.ap
        figures = {}
        audios = {}
        samples = test_loader.dataset.load_test_samples(1)
        for idx, sample in enumerate(samples):
            x = torch.FloatTensor(sample[0])
            x = x.to(next(self.parameters()).device)
            y_hat = self.inference(x, self.config.batched, self.config.target_samples, self.config.overlap_samples)
            x_hat = ap.melspectrogram(y_hat)
            figures.update(
                {
                    f"test_{idx}/ground_truth": plot_spectrogram(x.T),
                    f"test_{idx}/prediction": plot_spectrogram(x_hat.T),
                }
            )
            audios.update({f"test_{idx}/audio": y_hat})
            # audios.update({f"real_{idx}/audio": y_hat})
        return figures, audios
    def test_log(
        self, outputs: Dict, logger: "Logger", assets: Dict, steps: int  # pylint: disable=unused-argument
    ) -> Tuple[Dict, np.ndarray]:
        figures, audios = outputs
        logger.eval_figures(steps, figures)
        logger.eval_audios(steps, audios, self.ap.sample_rate)
    @staticmethod
    def format_batch(batch: Dict) -> Dict:
        waveform = batch[0]
        mels = batch[1]
        waveform_coarse = batch[2]
        return {"input": mels, "waveform": waveform, "waveform_coarse": waveform_coarse}
    def get_data_loader(  # pylint: disable=no-self-use
        self,
        config: Coqpit,
        assets: Dict,
        is_eval: True,
        samples: List,
        verbose: bool,
        num_gpus: int,
    ):
        ap = self.ap
        dataset = WaveRNNDataset(
            ap=ap,
            items=samples,
            seq_len=config.seq_len,
            hop_len=ap.hop_length,
            pad=config.model_args.pad,
            mode=config.model_args.mode,
            mulaw=config.model_args.mulaw,
            is_training=not is_eval,
            verbose=verbose,
        )
        sampler = DistributedSampler(dataset, shuffle=True) if num_gpus > 1 else None
        loader = DataLoader(
            dataset,
            batch_size=1 if is_eval else config.batch_size,
            shuffle=num_gpus == 0,
            collate_fn=dataset.collate,
            sampler=sampler,
            num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers,
            pin_memory=True,
        )
        return loader
    def get_criterion(self):
        # define train functions
        return WaveRNNLoss(self.args.mode)
    @staticmethod
    def init_from_config(config: "WavernnConfig"):
        return Wavernn(config)
 |