File size: 33,088 Bytes
a4a2363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
"""
Created By: ishwor subedi
Date: 2024-08-02
"""
import io
import json
import os
import string
import tempfile
import requests
import pandas as pd
from src import logging as logger
from supabase import create_client
from urllib.parse import urlparse

from src.api.jwt_bearer import access_check_bearer
from src.models.apis_models import *
from fastapi.requests import Request
from fastapi.routing import APIRouter
from fastapi import UploadFile, File, HTTPException, Form, Depends
from src.pipeline.conversai_pipeline import ConversAIPipeline
from src.api.user_management_api import user_management
from src.services.supabase.analytics.analytic_tables import track_usage
from src.services.supabase.user_management.token_limit import token_limit_check
from src.utils.error_handling import create_error_response, create_success_response, raise_http_exception
from src.api.user_management_api import user_management as user_management_pipeline
from src.utils.utils import get_ip_info, encode_to_base64, clean_text, decode_base64

conversai_api_router = APIRouter(tags=["ConversAI"])

supabase_client = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_KEY"))
supabase_client_ = supabase_client
conversai_pipeline = ConversAIPipeline()


@conversai_api_router.post("/add_text", dependencies=[Depends(access_check_bearer)])
async def add_text(request: AddTextRequest):
    logger.info(f">>>AddText API Triggered By {request.vectorstore}<<<")
    try:
        vectorstore, text = request.vectorstore, request.text
        track_usage(vectorstore=vectorstore, endpoint="/add_text", supabase_client=supabase_client)
        username, chat_bot_name = request.vectorstore.split("$")[1], request.vectorstore.split("$")[2]
        lim = token_limit_check(supabase_client=supabase_client, username=username, chatbot_name=chat_bot_name,
                                text=text)
        text = clean_text(text)
        if lim:
            dct = {
                "output": {"text": text},
                "source": "Text",
            }
            num_token = len(text.translate(str.maketrans('', '', string.punctuation)).split(" "))
            dct = json.dumps(dct, indent=1).encode("utf-8", errors="replace")
            file_name = user_management_pipeline.create_data_source_name(source_name="text", username=username)
            supabase_client.storage.from_("ConversAI").upload(file=dct, path=f"{file_name}_data.json")

            supa = supabase_client.table("ConversAI_ChatbotDataSources").insert(
                {"username": username, "chatbotName": chat_bot_name, "dataSourceName": file_name,
                 "numTokens": num_token, "sourceEndpoint": "/add_text",
                 "sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"],
                                                  f"{file_name}_data.json")}).execute()

            response = create_success_response(200, {"message": "Successfully added the text."})
            logger.info(f">>>Text added successfully for {request.vectorstore}.<<<")

            return response
        else:
            response = create_error_response(400,
                                             "Exceeding limits, please try with a smaller chunks of information or subscribe to our premium plan.")
            return response

    except Exception as e:
        logger.error(f">>>Error in add_text: {e} for {request.vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")


@conversai_api_router.post("/answer_query")
async def answer_query(request: AnswerQueryRequest, req: Request):
    logger.info(f">>>answer_query API Triggered By {request.vectorstore}<<<")
    try:
        track_usage(supabase_client=supabase_client, vectorstore=request.vectorstore, endpoint="/answer_query")
        username, chatbot_name = request.vectorstore.split("$")[1], request.vectorstore.split("$")[2]
        ip_address = req.client.host
        city = get_ip_info(ip_address)
        output, followup_questions, source = conversai_pipeline.answer_query_(query=request.query,
                                                                              vectorstore=request.vectorstore,
                                                                              llm_model=request.llm_model)
        supa = supabase_client.table("ConversAI_ChatHistory").insert(
            {"username": username, "chatbotName": chatbot_name, "llmModel": request.llm_model,
             "question": request.query, "response": output, "IpAddress": ip_address, "ResponseTokenCount": len(output),
             "vectorstore": request.vectorstore, "City": city}).execute()

        response = create_success_response(200, data={"output": output, "follow_up_questions": followup_questions,
                                                      "source": source})
        logger.info(f">>>Query answered successfully for {request.vectorstore}.<<<")
        return response

    except Exception as e:
        logger.error(f">>>Error in answer_query: {e} for {request.vectorstore}.<<<")
        raise HTTPException(status_code=500, detail="Internal Server Error")


@conversai_api_router.post("/data_analyzer", dependencies=[Depends(access_check_bearer)])
async def data_analyzer(query: str = Form(...), file: UploadFile = File(...)):
    logger.info(f">>>data_analyzer API Triggered By {query}<<<")
    try:
        extension = file.filename.split(".")[-1]
        if extension in ["xls", "xlsx", "xlsm", "xlsb"]:
            df = pd.read_excel(io.BytesIO(await file.read()))
        elif extension == "csv":
            df = pd.read_csv(io.BytesIO(await file.read()))
        else:
            return {"output": "INVALID FILE TYPE"}

        response = conversai_pipeline.data_analyzer(query=query, dataframe=df)
        response = create_success_response(200, {"output": response})
        logger.info(f">>>Data analyzed successfully for {query}.<<<")
        return response

    except Exception as e:
        logger.error(f">>>Error in data_analyzer: {e} for {query}.<<<")
        raise_http_exception(500, "Internal Server Error")


@conversai_api_router.post("/get_links", dependencies=[Depends(access_check_bearer)])
async def get_links(request: GetLinksRequest):
    logger.info(f">>>get_links API Triggered By {request.url}<<<")
    try:
        response = conversai_pipeline.get_links_(url=request.url, timeout=30)
        response = create_success_response(200, {"urls": response, "source": urlparse(request.url).netloc})
        logger.info(f">>>Links fetched successfully for {request.url}.<<<")
        return response

    except Exception as e:
        logger.error(f">>>Error in get_links: {e} for {request.url}.<<<")
        raise_http_exception(500, "Internal Server Error")


@conversai_api_router.post("/image_pdf_text_extraction", dependencies=[Depends(access_check_bearer)])
async def image_pdf_text_extraction(vectorstore: str = Form(...)
                                    , pdf: UploadFile = File(...)):
    logger.info(f">>>image_pdf_text_extraction API Triggered By {pdf.filename}<<<")
    try:
        track_usage(vectorstore=vectorstore, endpoint="/image_pdf_text_extraction", supabase_client=supabase_client)
        username, chatbot_name = vectorstore.split("$")[1], vectorstore.split("$")[2]
        source = pdf.filename
        pdf_bytes = await pdf.read()
        response = conversai_pipeline.image_pdf_text_extraction_(image_pdf=pdf_bytes)
        lim = token_limit_check(supabase_client=supabase_client, username=username, chatbot_name=chatbot_name,
                                text=response)

        if lim:
            dct = {
                "output": response,
                "source": source
            }
            dct = json.dumps(dct, indent=1).encode("utf-8", errors="replace")
            file_name = user_management_pipeline.create_data_source_name(source_name=source, username=username)
            num_tokens = len(
                " ".join([response[x] for x in response]).translate(str.maketrans('', '', string.punctuation)).split(
                    " "))
            response = supabase_client.storage.from_("ConversAI").upload(file=dct, path=f"{file_name}_data.json")
            supa = supabase_client.table("ConversAI_ChatbotDataSources").insert(
                {"username": username,
                 "chatbotName": chatbot_name,
                 "dataSourceName": file_name,
                 "numTokens": num_tokens,
                 "sourceEndpoint": "/image_pdf_text_extraction",
                 "sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"],
                                                  f"{file_name}_data.json")}).execute()

            response = create_success_response(200,
                                               {"source": pdf.filename, "message": "Successfully extracted the text."})
            logger.info(f">>>Text extracted successfully for {pdf.filename}.<<<")
            return response
        else:
            response = create_error_response(402,
                                             "Exceeding limits, please try with a smaller chunks of PDF or subscribe to our premium plan.")
            return response

    except Exception as e:
        logger.error(f">>>Error in image_pdf_text_extraction: {e} for {pdf.filename}.<<<")
        raise_http_exception(500, "Internal Server Error")


@conversai_api_router.post("/text_pdf_extraction", dependencies=[Depends(access_check_bearer)])
async def text_pdf_extraction(vectorstore: str = Form(...)
                              , pdf: UploadFile = File(...)):
    logger.info(f">>>text_pdf_extraction API Triggered By {pdf.filename}<<<")
    try:
        track_usage(vectorstore=vectorstore, endpoint="/text_pdf_extraction", supabase_client=supabase_client)
        username, chatbot_name = vectorstore.split("$")[1], vectorstore.split("$")[2]
        source = pdf.filename
        pdf = await pdf.read()
        with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_file:
            temp_file.write(pdf)
            temp_file_path = temp_file.name

        response = conversai_pipeline.text_pdf_extraction_(pdf=temp_file_path)
        lim = token_limit_check(supabase_client=supabase_client, username=username, chatbot_name=chatbot_name,
                                text=response)
        os.remove(temp_file_path)
        if lim:
            dct = {
                "output": response,
                "source": source
            }
            numTokens = len(
                " ".join([response[x] for x in response]).translate(str.maketrans('', '', string.punctuation)).split(
                    " "))
            dct = json.dumps(dct, indent=1).encode("utf-8", errors="replace")
            file_name = user_management_pipeline.create_data_source_name(source_name=source, username=username)
            response = supabase_client.storage.from_("ConversAI").upload(file=dct, path=f"{file_name}_data.json")
            response = (
                supabase_client.table("ConversAI_ChatbotDataSources")
                .insert({"username": username,
                         "chatbotName": chatbot_name,
                         "dataSourceName": file_name,
                         "numTokens": numTokens,
                         "sourceEndpoint": "/text_pdf_extraction",
                         "sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"],
                                                          f"{file_name}_data.json")})
                .execute()
            )
            response = create_success_response(200, {"source": source, "message": "Successfully extracted the text."})
            logger.info(f">>>Text extracted successfully for {source}.<<<")
            return response

        else:
            response = create_error_response(402,
                                             "Exceeding limits, please try with a smaller chunks of PDF or subscribe to our premium plan.")
            return response

    except Exception as e:
        logger.error(f">>>Error in text_pdf_extraction: {e} for {vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")


@conversai_api_router.post("/youtube_transcript", dependencies=[Depends(access_check_bearer)])
async def youtube_transcript(request: YoutubeTranscriptRequest):
    vectorstore, urls = request.vectorstore, request.urls
    logger.info(f">>>youtube_transcript API Triggered By {urls}<<<")
    try:
        track_usage(supabase_client=supabase_client, vectorstore=vectorstore, endpoint="/youtube_transcript")
        username, chatbot_name = vectorstore.split("$")[1], vectorstore.split("$")[2]

        response = conversai_pipeline.youtube_transcript_(url=urls)
        lim = token_limit_check(supabase_client=supabase_client, username=username, chatbot_name=chatbot_name,
                                text=response)
        if lim:

            dct = {
                "output": response,
                "source": "www.youtube.com"
            }
            num_tokens = len(
                " ".join([response[x] for x in response]).translate(str.maketrans('', '', string.punctuation)).split(
                    " "))
            dct = json.dumps(dct, indent=1).encode("utf-8", errors="replace")
            file_name = user_management_pipeline.create_data_source_name(source_name="youtube", username=username)
            response = supabase_client.storage.from_("ConversAI").upload(file=dct, path=f"{file_name}_data.json")
            response = (
                supabase_client.table("ConversAI_ChatbotDataSources")
                .insert({"username": username,
                         "chatbotName": chatbot_name,
                         "dataSourceName": file_name,
                         "numTokens": num_tokens,
                         "sourceEndpoint": "/youtube_transcript",
                         "sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"],
                                                          f"{file_name}_data.json")})
                .execute()
            )
            response = create_success_response(200, {"message": "Successfully fetched the youtube transcript."})
            logger.info(f">>>Youtube transcript fetched successfully for {urls}.<<<")
            return response
        else:
            response = create_error_response(402,
                                             "Exceeding limits, please try with a smaller chunks of information or subscribe to our premium plan.")
            return response

    except Exception as e:
        logger.error(f">>>Error in youtube_transcript: {e} for {urls}.<<<")
        raise_http_exception(500, "Internal Server Error")


@conversai_api_router.post("/website_url_text_extraction", dependencies=[Depends(access_check_bearer)])
async def add_website(request: AddWebsiteRequest):
    vectorstore, website_urls, source = request.vectorstore, request.website_urls, request.source

    logger.info(f">>>website_url_text_extraction API Triggered By {request.website_urls}<<<")
    try:
        track_usage(supabase_client=supabase_client, vectorstore=vectorstore, endpoint="/fetch_text/urls")
        username, chatbot_name = vectorstore.split("$")[1], vectorstore.split("$")[2]

        text = conversai_pipeline.website_url_text_extraction_list_(urls=website_urls)
        lim = token_limit_check(supabase_client=supabase_client, username=username, chatbot_name=chatbot_name,
                                text=text)
        if not lim:
            response = create_error_response(402,
                                             "Exceeding limits, please try with a smaller chunks of information or subscribe to our premium plan.")
            return response
        else:
            dct = {
                "output": text,
                "source": source
            }
            num_tokens = len(
                " ".join([text[x] for x in text]).translate(str.maketrans('', '', string.punctuation)).split(" "))
            dct = json.dumps(dct, indent=1).encode("utf-8", errors="replace")
            file_name = user_management_pipeline.create_data_source_name(source_name=urlparse(source).netloc,
                                                                         username=username)
            supabase_client.storage.from_("ConversAI").upload(file=dct, path=f"{file_name}_data.json")
            (
                supabase_client.table("ConversAI_ChatbotDataSources")
                .insert({"username": username,
                         "chatbotName": chatbot_name,
                         "dataSourceName": file_name,
                         "numTokens": num_tokens,
                         "sourceEndpoint": "/fetch_text/urls",
                         "sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"],
                                                          f"{file_name}_data.json")})
                .execute()
            )
            response = create_success_response(200, {"message": "Successfully fetched the website text."})
            logger.info(f">>>Website text extracted successfully for {request.website_urls}.<<<")
            return response
    except Exception as e:
        logger.error(f">>>Error in website_url_text_extraction: {e} for {request.website_urls}.<<<")
        raise HTTPException(status_code=500, detail="Internal Server Error")


@conversai_api_router.get("/get_current_count", dependencies=[Depends(access_check_bearer)])
async def get_count(vectorstore: str):
    logger.info(f">>>get_current_count API Triggered By {vectorstore}<<<")
    try:
        username, chatbot_name = vectorstore.split("$")[1], vectorstore.split("$")[2]
        current_count = user_management_pipeline.get_current_count_(username)

        response = create_success_response(200, {"current_count": current_count})
        logger.info(f">>>Current count fetched successfully for {vectorstore}.<<<")
        return response

    except Exception as e:
        logger.error(f">>>Error in get_current_count: {e} for {vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")


@conversai_api_router.post("/list_chatbots", dependencies=[Depends(access_check_bearer)])
async def list_chatbots(request: ListChatbotsRequest):
    logger.info(f">>>list_chatbots API Triggered By {request.username}<<<")
    try:
        chatbots = user_management.list_tables(username=request.username)
        response = create_success_response(200, {"chatbots": chatbots})
        logger.info(f">>>Chatbots listed successfully for {request.username}.<<<")
        return response

    except Exception as e:
        logger.error(f">>>Error in list_chatbots: {e} for {request.username}.<<<")
        raise_http_exception(500, "Internal Server Error")


@conversai_api_router.post("/get_chat_history", dependencies=[Depends(access_check_bearer)])
async def chat_history(request: GetChatHistoryRequest):
    logger.info(f">>>get_chat_history API Triggered By {request.vectorstore}<<<")
    try:
        _, username, chatbotName = request.vectorstore.split("$", 2)

        history = supabase_client.table("ConversAI_ChatHistory").select(
            "timestamp", "question", "response"
        ).eq("username", username).eq("chatbotName", chatbotName).execute().data

        response = create_success_response(200, {"history": history})
        logger.info(f">>>Chat history fetched successfully for {request.vectorstore}.<<<")
        return response


    except IndexError:
        logger.warning(f"Chat history not found for {request.vectorstore}")
        return create_error_response(404, "Chat history not found for the given chatbot.")

    except Exception as e:
        logger.error(f">>>Error in get_chat_history: {e} for {request.vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")


@conversai_api_router.post("/delete_chatbot", dependencies=[Depends(access_check_bearer)])
async def delete_chatbot(request: DeleteChatbotRequest):
    logger.info(f">>>delete_chatbot API Triggered By {request.vectorstore}<<<")
    try:
        username, chatbot_name = request.vectorstore.split("$")[1], request.vectorstore.split("$")[2]
        supabase_client.table('ConversAI_ChatbotInfo').delete().eq('user_id', username).eq('chatbotname',
                                                                                           chatbot_name).execute()
        all_sources = supabase_client.table("ConversAI_ChatbotDataSources").select("*").eq("username", username).eq(
            "chatbotName", chatbot_name).execute().data
        all_sources = [x["sourceContentURL"].split("/")[-1] for x in all_sources]
        supabase_client.table("ConversAI_ChatbotDataSources").delete().eq("username", username).eq("chatbotName",
                                                                                                   chatbot_name).execute()
        supabase_client.table("ConversAI_ActivityLog").update({"isActive": False}).eq("username", username).eq(
            "chatbotName",
            chatbot_name).execute()
        supabase_client.table("ConversAI_ChatHistory").update({"isActive": False}).eq("username", username).eq(
            "chatbotName",
            chatbot_name).execute()
        for source in all_sources:
            supabase_client.table("ConversAI_Chatbot")
            supabase_client.storage.from_("ConversAI").remove(source)
        user_management.delete_table(table_name=chatbot_name)
        user_management.delete_qdrant_cluster(vectorstorename=request.vectorstore)
        response = create_success_response(200, {"message": "Chatbot deleted successfully"})
        logger.info(f">>>Chatbot deleted successfully for {request.vectorstore}.<<<")
        return response
    except Exception as e:
        logger.error(f">>>Error in delete_chatbot: {e} for {request.vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")


@conversai_api_router.post("/add_qa_pair", dependencies=[Depends(access_check_bearer)])
async def add_qa_pair(request: AddQAPairRequest):
    logger.info(f">>>add_qa_pair API Triggered By {request.vectorstore}<<<")
    try:
        vectorstore, question, answer = request.vectorstore, request.question, request.answer
        track_usage(vectorstore=vectorstore, endpoint="/add_qa_pair", supabase_client=supabase_client)
        username, chat_bot_name = request.vectorstore.split("$")[1], request.vectorstore.split("$")[2]
        normal_text = f"\nQUESTION: {question}\nANSWER: {answer}\n"
        lim = token_limit_check(supabase_client=supabase_client, username=username, chatbot_name=chat_bot_name,
                                text=normal_text)
        if lim:
            dct = {
                "output": {"text": normal_text},
                "source": "QA Pair",
            }
            num_token = len(normal_text.translate(str.maketrans('', '', string.punctuation)).split(" "))
            dct = json.dumps(dct, indent=1).encode("utf-8", errors="replace")
            file_name = user_management_pipeline.create_data_source_name(source_name="qa_pair", username=username)
            supabase_client.storage.from_("ConversAI").upload(file=dct, path=f"{file_name}_data.json")
            (
                supabase_client.table("ConversAI_ChatbotDataSources")
                .insert({"username": username,
                         "chatbotName": chat_bot_name,
                         "dataSourceName": file_name,
                         "numTokens": num_token,
                         "sourceEndpoint": "/add_qa_pair",
                         "sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"],
                                                          f"{file_name}_data.json")})
                .execute()
            )

            response = create_success_response(200, {"message": "Successfully added the qa pair."})
            logger.info(f">>>QA Pair added successfully for {request.vectorstore}.<<<")

            return response
        else:
            response = create_error_response(400,
                                             "Exceeding limits, please try with a smaller chunks of information or subscribe to our premium plan.")
            return response

    except Exception as e:
        logger.error(f">>>Error in add_qa_pair: {e} for {request.vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")


@conversai_api_router.post("/load_edited_json", dependencies=[Depends(access_check_bearer)])
async def load_edited_json(request: LoadEditedJson):
    vectorstore, data_source_name, source_endpoint, json_data = request.vectorstore, request.data_source_name, request.source_endpoint, request.json_data
    username, chatbot_name = request.vectorstore.split("$")[1], request.vectorstore.split("$")[2]

    logger.info(f">>>loadEditedJson API Triggered By {request.vectorstore}<<<")
    try:
        track_usage(supabase_client=supabase_client, vectorstore=request.vectorstore,
                    endpoint="/load_edited_json")
        json_data = decode_base64(request.json_data)
        json_data = json.dumps(json_data, indent=1).encode("utf-8", errors="replace")
        file_name = user_management_pipeline.create_data_source_name(source_name=data_source_name,
                                                                     username=username)
        response = supabase_client.storage.from_("ConversAI").upload(file=json_data, path=f"{file_name}_data.json")
        response = (
            supabase_client.table("ConversAI_ChatbotDataSources")
            .insert({"username": username,
                     "chatbotName": chatbot_name,
                     "dataSourceName": file_name,
                     "sourceEndpoint": source_endpoint,
                     "sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"],
                                                      f"{file_name}_data.json")})
            .execute()
        )
        response = create_success_response(200, {"output": "Successfully loaded the edited json."})
        logger.info(f">>>Edited json loaded successfully for {vectorstore}.<<<")

        return response

    except Exception as e:
        logger.error(f">>>Error in loadEditedJson: {e} for {vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")


@conversai_api_router.get("/list_chatbot_sources", dependencies=[Depends(access_check_bearer)])
async def list_chatbot_sources(vectorstore: str):
    try:
        logger.info(f">>>list_chatbot_sources API Triggered By {vectorstore}<<<")

        track_usage(supabase_client=supabase_client, vectorstore=vectorstore, endpoint="/list_chatbot_sources")
        username, chatbot_name = vectorstore.split("$")[1], vectorstore.split("$")[2]
        result = supabase_client.table("ConversAI_ChatbotDataSources").select("*").eq("username", username).eq(
            "chatbotName",
            chatbot_name).execute().data

        response = create_success_response(200, {"output": result})
        logger.info(f">>>Chatbot listed successfully for {vectorstore}.<<<")
        return response

    except Exception as e:
        logger.error(f">>>Error in list_chatbot_sources: {e} for {vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")


@conversai_api_router.get("/get_data_source", dependencies=[Depends(access_check_bearer)])
async def get_data_source(vectorstore: str, source_url: str):
    try:
        logger.info(f">>>get_data_source API Triggered By {vectorstore}<<<")

        track_usage(supabase_client=supabase_client, vectorstore=vectorstore, endpoint="/get_data_source")
        r = requests.get(source_url)
        res = encode_to_base64(eval(r.content.decode("utf-8", errors="replace")))

        response = create_success_response(200, {"output": res})

        return response

    except Exception as e:
        logger.error(f">>>Error in get_data_source: {e} for {vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")


@conversai_api_router.post("/delete_chatbot_source", dependencies=[Depends(access_check_bearer)])
async def delete_chatbot_source(request: DeleteChatbotSourceRequest):
    vectorstore, data_source_name = request.vectorstore, request.data_source_name
    try:

        track_usage(supabase_client=supabase_client, vectorstore=vectorstore, endpoint="/delete_chatbot_source")
        response = supabase_client.table("ConversAI_ChatbotDataSources").delete().eq("dataSourceName",
                                                                                     data_source_name).execute()
        response = supabase_client.storage.from_('ConversAI').remove(f"{data_source_name}_data.json")

        response = create_success_response(200, {"output": f"Successfully deleted the {data_source_name} data source."})

        logger.info(f">>>Data source deleted successfully for {vectorstore}.<<<")
        return response


    except Exception as e:
        logger.error(f">>>Error in delete_chatbot_source: {e} for {vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")


@conversai_api_router.post("/train_chatbot", dependencies=[Depends(access_check_bearer)])
async def train_chatbot(request: TrainChatbotRequest):
    vectorstore, url_sources = request.vectorstore, request.urls
    logger.info(f">>>train_chatbot API Triggered By {vectorstore}<<<")
    try:
        track_usage(supabase_client=supabase_client, vectorstore=vectorstore, endpoint="/train_chatbot")
        texts = []
        sources = []
        fileTypes = [
            supabase_client.table("ConversAI_ChatbotDataSources").select("sourceEndpoint").eq("sourceContentURL",
                                                                                              x).execute().data[0][
                "sourceEndpoint"] for x in url_sources]
        for source, fileType in zip(url_sources, fileTypes):
            if ((fileType == "/text_pdf_extraction") | (fileType == "/image_pdf_text_extraction")):
                r = requests.get(source)
                file = eval(r.content.decode("utf-8", errors="replace"))
                content = file["output"]
                fileSource = file["source"]
                texts.append(".".join(
                    [content[key] for key in content.keys()]).replace(
                    "\n", " "))
                sources.append(fileSource)
            elif fileType == "/add_text" or fileType == "/add_qa_pair":
                r = requests.get(source)
                file = eval(r.content.decode("utf-8", errors="replace"))
                content = file["output"]["text"]
                fileSource = file["source"]
                texts.append(content.replace("\n", " "))
                sources.append(fileSource)
            elif ((fileType == "/website_url_text_extraction") | (fileType == "/youtube_transcript")):
                r = requests.get(source)
                file = eval(r.content.decode("utf-8", errors="replace"))
                content = file["output"]
                fileSource = file["source"]
                texts.append(".".join(
                    [content[key] for key in content.keys()]).replace(
                    "\n", " "))
                sources.append(fileSource)
            else:
                pass
        texts = [(text, source) for text, source in zip(texts, sources)]
        conversai_pipeline.add_document_(texts, vectorstore)
        response = create_success_response(200, {"message": "Chatbot trained successfully."})
        logger.info(f">>>Chatbot trained successfully for {vectorstore}.<<<")

        return response


    except Exception as e:
        logger.error(f">>>Error in train_chatbot: {e} for {vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")


@conversai_api_router.get("/activity_log", dependencies=[Depends(access_check_bearer)])
async def activity_log(username: str):
    logger.info(f">>>activityLog API Triggered By {username}<<<")
    try:
        response = supabase_client.table("ConversAI_ActivityLog").select("*").eq("username", username).execute().data

        logger.info(f">>>Activity log fetched successfully for {username}.<<<")

        return response
    except Exception as e:
        logger.error(f">>>Error in activityLog: {e} for {username}.<<<")
        raise_http_exception(500, "Internal Server Error")


@conversai_api_router.post("/new_chatbot", dependencies=[Depends(access_check_bearer)])
async def new_chatbot(request: NewChatbotRequest):
    logger.info(f">>> new_chatbot API Triggered <<<")
    try:
        response = user_management.new_chatbot_(chatbot_name=request.chatbot_name, username=request.username)
        logger.info(f">>> Chatbot created successfully for {request.username}.<<<")
        return response

    except Exception as e:
        logger.error(f">>>Error in new_chatbot: {e} for {request.username}.<<<")
        raise_http_exception(500, "Internal Server Error")