import gradio as gr import numpy as np import onnxruntime as ort import torch import gc import os import time from transformers import AutoTokenizer, AutoModelForCausalLM from huggingface_hub import hf_hub_download, HfFolder token = HfFolder.get_token() or os.getenv("HF_TOKEN") HF_MODEL_ID = "mistralai/Mistral-Nemo-Instruct-2407" HF_ONNX_REPO = "techAInewb/mistral-nemo-2407-fp32" ONNX_MODEL_FILE = "model.onnx" # Shared tokenizer tokenizer = AutoTokenizer.from_pretrained(HF_MODEL_ID, token=token) def compare_outputs(prompt, show_tokens): summary_log = [] pt_output_text = "" ort_output_text = "" pt_tokens = [] ort_tokens = [] try: import psutil ram_used = f"{psutil.virtual_memory().used / 1e9:.2f} GB" except: ram_used = "Unavailable" # šŸ”¹ PyTorch Generate pt_start = time.time() try: torch_inputs = tokenizer(prompt, return_tensors="pt") pt_model = AutoModelForCausalLM.from_pretrained(HF_MODEL_ID, torch_dtype=torch.float32, token=token) pt_model.eval() with torch.no_grad(): pt_outputs = pt_model.generate(**torch_inputs, max_new_tokens=50) pt_output_ids = pt_outputs[0].tolist() pt_output_text = tokenizer.decode(pt_output_ids, skip_special_tokens=True) pt_tokens = tokenizer.convert_ids_to_tokens(pt_output_ids) pt_time = time.time() - pt_start finally: del pt_model gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() # šŸ”¹ ONNX Generate (Greedy) ort_start = time.time() ort_inputs = tokenizer(prompt, return_tensors="np") onnx_path = hf_hub_download(repo_id=HF_ONNX_REPO, filename=ONNX_MODEL_FILE) ort_session = ort.InferenceSession(onnx_path, providers=["CPUExecutionProvider"]) ort_output_ids = [] generated = ort_inputs["input_ids"] attention_mask = ort_inputs["attention_mask"] for _ in range(50): ort_outputs = ort_session.run(None, { "input_ids": generated, "attention_mask": attention_mask }) next_token_logits = ort_outputs[0][:, -1, :] next_token = np.argmax(next_token_logits, axis=-1).reshape(-1, 1) ort_output_ids.append(next_token[0][0]) generated = np.concatenate((generated, next_token), axis=1) attention_mask = np.concatenate((attention_mask, np.ones((1, 1), dtype=np.int64)), axis=1) if next_token[0][0] == tokenizer.eos_token_id: break ort_time = time.time() - ort_start ort_tokens = tokenizer.convert_ids_to_tokens(ort_inputs["input_ids"][0].tolist() + ort_output_ids) ort_output_text = tokenizer.decode(ort_inputs["input_ids"][0].tolist() + ort_output_ids, skip_special_tokens=True) # šŸ“Š Summary summary_log.append("| Model | Tokens | Time (s) | Time/Token |") summary_log.append("|---------|--------|----------|------------|") summary_log.append(f"| PyTorch | {len(pt_tokens)} | {pt_time:.2f} | {pt_time / max(1, len(pt_tokens)):.4f} |") summary_log.append(f"| ONNX | {len(ort_tokens)} | {ort_time:.2f} | {ort_time / max(1, len(ort_tokens)):.4f} |") summary_log.append(f"\nšŸ“¦ RAM Used: {ram_used}") summary_log.append(f"šŸ“š Tokenizer: {tokenizer.name_or_path} | Vocab size: {tokenizer.vocab_size}") summary_log.append("šŸ› ļø Note: This ONNX export is FP32. INT8 + Vitis AI variants coming soon.") outputs = [pt_output_text, ort_output_text, "\n".join(summary_log)] if show_tokens: outputs += [ ", ".join(pt_tokens), ", ".join(ort_tokens) ] else: outputs += ["", ""] return outputs example_prompts = [ "Who was the first president of the United States?", "If you have 3 apples and eat 1, how many are left?", "Write a short poem about memory and time.", "Explain the laws of motion in simple terms.", "What happens when you mix baking soda and vinegar?" ] iface = gr.Interface( fn=compare_outputs, inputs=[ gr.Textbox(lines=2, placeholder="Enter a prompt..."), gr.Checkbox(label="Show Token IDs") ], outputs=[ gr.Textbox(label="PyTorch Output"), gr.Textbox(label="ONNX Output"), gr.Textbox(label="Evaluation Summary"), gr.Textbox(label="PyTorch Tokens"), gr.Textbox(label="ONNX Tokens") ], title="ONNX vs PyTorch (Full Output + Token Trace)", description="Run both models on your prompt and compare output text, timing, and token traces. Sequential model loading avoids OOM.", examples=[[p, False] for p in example_prompts] ) iface.launch()