import gradio as gr import numpy as np import onnxruntime as ort import torch import gc import os import time from transformers import AutoTokenizer, AutoModelForCausalLM from huggingface_hub import hf_hub_download, HfFolder token = HfFolder.get_token() or os.getenv("HF_TOKEN") HF_MODEL_ID = "mistralai/Mistral-Nemo-Instruct-2407" HF_ONNX_REPO = "techAInewb/mistral-nemo-2407-fp32" ONNX_MODEL_FILE = "model.onnx" # Shared tokenizer tokenizer = AutoTokenizer.from_pretrained(HF_MODEL_ID, token=token) def greedy_decode_onnx(session, input_ids, attention_mask, max_new_tokens=50): generated = input_ids.copy() for _ in range(max_new_tokens): outputs = session.run(None, { "input_ids": generated, "attention_mask": attention_mask }) next_token_logits = outputs[0][:, -1, :] next_token = np.argmax(next_token_logits, axis=-1).reshape(-1, 1) generated = np.concatenate((generated, next_token), axis=1) attention_mask = np.concatenate( (attention_mask, np.ones((1, 1), dtype=np.int64)), axis=1) if next_token[0][0] == tokenizer.eos_token_id: break return tokenizer.decode(generated[0], skip_special_tokens=True) def compare_outputs(prompt): summary_log = [] # ๐Ÿ”น PyTorch Generate pt_output_text = "" pt_start = time.time() try: torch_inputs = tokenizer(prompt, return_tensors="pt") pt_model = AutoModelForCausalLM.from_pretrained(HF_MODEL_ID, torch_dtype=torch.float32, token=token) pt_model.eval() with torch.no_grad(): pt_outputs = pt_model.generate(**torch_inputs, max_new_tokens=50) pt_output_text = tokenizer.decode(pt_outputs[0], skip_special_tokens=True) pt_time = time.time() - pt_start summary_log.append(f"๐Ÿง  PyTorch output length: {pt_outputs.shape[1]} tokens | Time: {pt_time:.2f}s") finally: del pt_model gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() # ๐Ÿ”น ONNX Generate (Greedy) ort_output_text = "" ort_start = time.time() ort_inputs = tokenizer(prompt, return_tensors="np") onnx_path = hf_hub_download(repo_id=HF_ONNX_REPO, filename=ONNX_MODEL_FILE) ort_session = ort.InferenceSession(onnx_path, providers=["CPUExecutionProvider"]) ort_output_text = greedy_decode_onnx( ort_session, ort_inputs["input_ids"], ort_inputs["attention_mask"], max_new_tokens=50 ) ort_time = time.time() - ort_start summary_log.append(f"โš™๏ธ ONNX output length: {len(tokenizer(ort_output_text)['input_ids'])} tokens | Time: {ort_time:.2f}s") # Final notes summary_log.append(f"๐Ÿงช Tokenizer source: {tokenizer.name_or_path} | Vocab size: {tokenizer.vocab_size}") summary_log.append("๐Ÿ’ก Note: Future versions will include quantized ONNX (INT8) + Vitis AI support.") return pt_output_text, ort_output_text, "\n".join(summary_log) example_prompts = [ "Who was the first president of the United States?", "If you have 3 apples and eat 1, how many are left?", "Write a short poem about memory and time.", "Explain the laws of motion in simple terms.", "What happens when you mix baking soda and vinegar?" ] iface = gr.Interface( fn=compare_outputs, inputs=gr.Textbox(lines=2, placeholder="Enter a prompt..."), outputs=[ gr.Textbox(label="PyTorch Output"), gr.Textbox(label="ONNX Output"), gr.Textbox(label="Test Summary & Metadata") ], title="ONNX vs PyTorch (Full Output Comparison)", description="Sequentially runs both models on your prompt and returns decoded output + metadata.", examples=[[p] for p in example_prompts] ) iface.launch()