File size: 3,750 Bytes
8ee35af
 
 
 
339541e
 
 
 
 
64116c6
 
 
8ee35af
 
 
 
 
339541e
64116c6
8ee35af
339541e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ee35af
 
339541e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ee35af
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import gradio as gr
import numpy as np
import onnxruntime as ort
import torch
import gc
import os
import time

from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import hf_hub_download, HfFolder

token = HfFolder.get_token() or os.getenv("HF_TOKEN")

HF_MODEL_ID = "mistralai/Mistral-Nemo-Instruct-2407"
HF_ONNX_REPO = "techAInewb/mistral-nemo-2407-fp32"
ONNX_MODEL_FILE = "model.onnx"

# Shared tokenizer
tokenizer = AutoTokenizer.from_pretrained(HF_MODEL_ID, token=token)

def greedy_decode_onnx(session, input_ids, attention_mask, max_new_tokens=50):
    generated = input_ids.copy()
    for _ in range(max_new_tokens):
        outputs = session.run(None, {
            "input_ids": generated,
            "attention_mask": attention_mask
        })
        next_token_logits = outputs[0][:, -1, :]
        next_token = np.argmax(next_token_logits, axis=-1).reshape(-1, 1)
        generated = np.concatenate((generated, next_token), axis=1)
        attention_mask = np.concatenate(
            (attention_mask, np.ones((1, 1), dtype=np.int64)), axis=1)
        if next_token[0][0] == tokenizer.eos_token_id:
            break
    return tokenizer.decode(generated[0], skip_special_tokens=True)

def compare_outputs(prompt):
    summary_log = []

    # ๐Ÿ”น PyTorch Generate
    pt_output_text = ""
    pt_start = time.time()
    try:
        torch_inputs = tokenizer(prompt, return_tensors="pt")
        pt_model = AutoModelForCausalLM.from_pretrained(HF_MODEL_ID, torch_dtype=torch.float32, token=token)
        pt_model.eval()
        with torch.no_grad():
            pt_outputs = pt_model.generate(**torch_inputs, max_new_tokens=50)
        pt_output_text = tokenizer.decode(pt_outputs[0], skip_special_tokens=True)
        pt_time = time.time() - pt_start
        summary_log.append(f"๐Ÿง  PyTorch output length: {pt_outputs.shape[1]} tokens | Time: {pt_time:.2f}s")
    finally:
        del pt_model
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

    # ๐Ÿ”น ONNX Generate (Greedy)
    ort_output_text = ""
    ort_start = time.time()
    ort_inputs = tokenizer(prompt, return_tensors="np")
    onnx_path = hf_hub_download(repo_id=HF_ONNX_REPO, filename=ONNX_MODEL_FILE)
    ort_session = ort.InferenceSession(onnx_path, providers=["CPUExecutionProvider"])
    ort_output_text = greedy_decode_onnx(
        ort_session, ort_inputs["input_ids"], ort_inputs["attention_mask"], max_new_tokens=50
    )
    ort_time = time.time() - ort_start
    summary_log.append(f"โš™๏ธ ONNX output length: {len(tokenizer(ort_output_text)['input_ids'])} tokens | Time: {ort_time:.2f}s")

    # Final notes
    summary_log.append(f"๐Ÿงช Tokenizer source: {tokenizer.name_or_path} | Vocab size: {tokenizer.vocab_size}")
    summary_log.append("๐Ÿ’ก Note: Future versions will include quantized ONNX (INT8) + Vitis AI support.")

    return pt_output_text, ort_output_text, "\n".join(summary_log)

example_prompts = [
    "Who was the first president of the United States?",
    "If you have 3 apples and eat 1, how many are left?",
    "Write a short poem about memory and time.",
    "Explain the laws of motion in simple terms.",
    "What happens when you mix baking soda and vinegar?"
]

iface = gr.Interface(
    fn=compare_outputs,
    inputs=gr.Textbox(lines=2, placeholder="Enter a prompt..."),
    outputs=[
        gr.Textbox(label="PyTorch Output"),
        gr.Textbox(label="ONNX Output"),
        gr.Textbox(label="Test Summary & Metadata")
    ],
    title="ONNX vs PyTorch (Full Output Comparison)",
    description="Sequentially runs both models on your prompt and returns decoded output + metadata.",
    examples=[[p] for p in example_prompts]
)

iface.launch()