import os import sqlite3 import time import cv2 import gradio as gr import matplotlib.pyplot as plt import numpy as np import onnxruntime as ort import pandas as pd from huggingface_hub import hf_hub_download from PIL import Image # Model info REPO_ID = "tech4humans/yolov8s-signature-detector" FILENAME = "yolov8s.onnx" MODEL_DIR = "model" MODEL_PATH = os.path.join(MODEL_DIR, "model.onnx") DATABASE_DIR = os.path.join(os.getcwd(), "db") DATABASE_PATH = os.path.join(DATABASE_DIR, "metrics.db") def download_model(): """Download the model using Hugging Face Hub""" # Ensure model directory exists os.makedirs(MODEL_DIR, exist_ok=True) try: print(f"Downloading model from {REPO_ID}...") # Download the model file from Hugging Face Hub model_path = hf_hub_download( repo_id=REPO_ID, filename=FILENAME, local_dir=MODEL_DIR, force_download=True, cache_dir=None, ) # Move the file to the correct location if it's not there already if os.path.exists(model_path) and model_path != MODEL_PATH: os.rename(model_path, MODEL_PATH) # Remove empty directories if they exist empty_dir = os.path.join(MODEL_DIR, "tune") if os.path.exists(empty_dir): import shutil shutil.rmtree(empty_dir) print("Model downloaded successfully!") return MODEL_PATH except Exception as e: print(f"Error downloading model: {e}") raise e class MetricsStorage: def __init__(self, db_path=DATABASE_PATH): self.db_path = db_path self.setup_database() def setup_database(self): """Initialize the SQLite database and create tables if they don't exist""" with sqlite3.connect(self.db_path) as conn: cursor = conn.cursor() cursor.execute( """ CREATE TABLE IF NOT EXISTS inference_metrics ( id INTEGER PRIMARY KEY AUTOINCREMENT, inference_time REAL, timestamp DATETIME DEFAULT CURRENT_TIMESTAMP ) """ ) conn.commit() def add_metric(self, inference_time): """Add a new inference time measurement to the database""" with sqlite3.connect(self.db_path) as conn: cursor = conn.cursor() cursor.execute( "INSERT INTO inference_metrics (inference_time) VALUES (?)", (inference_time,), ) conn.commit() def get_recent_metrics(self, limit=50): """Get the most recent metrics from the database""" with sqlite3.connect(self.db_path) as conn: cursor = conn.cursor() cursor.execute( "SELECT inference_time FROM inference_metrics ORDER BY timestamp DESC LIMIT ?", (limit,), ) results = cursor.fetchall() return [r[0] for r in reversed(results)] def get_total_inferences(self): """Get the total number of inferences recorded""" with sqlite3.connect(self.db_path) as conn: cursor = conn.cursor() cursor.execute("SELECT COUNT(*) FROM inference_metrics") return cursor.fetchone()[0] def get_average_time(self, limit=50): """Get the average inference time from the most recent entries""" with sqlite3.connect(self.db_path) as conn: cursor = conn.cursor() cursor.execute( "SELECT AVG(inference_time) FROM (SELECT inference_time FROM inference_metrics ORDER BY timestamp DESC LIMIT ?)", (limit,), ) result = cursor.fetchone()[0] return result if result is not None else 0 class SignatureDetector: def __init__(self, model_path): self.model_path = model_path self.classes = ["signature"] self.input_width = 640 self.input_height = 640 # Initialize ONNX Runtime session self.session = ort.InferenceSession( MODEL_PATH ) self.session.set_providers(['OpenVINOExecutionProvider'], [{'device_type' : 'CPU'}]) self.metrics_storage = MetricsStorage() def update_metrics(self, inference_time): """Update metrics in persistent storage""" self.metrics_storage.add_metric(inference_time) def get_metrics(self): """Get current metrics from storage""" times = self.metrics_storage.get_recent_metrics() total = self.metrics_storage.get_total_inferences() avg = self.metrics_storage.get_average_time() start_index = max(0, total - len(times)) return { "times": times, "total_inferences": total, "avg_time": avg, "start_index": start_index, # Adicionar índice inicial } def load_initial_metrics(self): """Load initial metrics for display""" metrics = self.get_metrics() if not metrics["times"]: # Se não houver dados return None, None, None, None # Criar plots data hist_data = pd.DataFrame({"Tempo (ms)": metrics["times"]}) indices = range( metrics["start_index"], metrics["start_index"] + len(metrics["times"]) ) line_data = pd.DataFrame( { "Inferência": indices, "Tempo (ms)": metrics["times"], "Média": [metrics["avg_time"]] * len(metrics["times"]), } ) # Criar plots hist_fig, line_fig = self.create_plots(hist_data, line_data) return ( None, f"Total de Inferências: {metrics['total_inferences']}", hist_fig, line_fig, ) def create_plots(self, hist_data, line_data): """Helper method to create plots""" plt.style.use("dark_background") # Histograma hist_fig, hist_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5") hist_ax.set_facecolor("#f0f0f5") hist_data.hist( bins=20, ax=hist_ax, color="#4F46E5", alpha=0.7, edgecolor="white" ) hist_ax.set_title( "Distribuição dos Tempos de Inferência", pad=15, fontsize=12, color="#1f2937", ) hist_ax.set_xlabel("Tempo (ms)", color="#374151") hist_ax.set_ylabel("Frequência", color="#374151") hist_ax.tick_params(colors="#4b5563") hist_ax.grid(True, linestyle="--", alpha=0.3) # Gráfico de linha line_fig, line_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5") line_ax.set_facecolor("#f0f0f5") line_data.plot( x="Inferência", y="Tempo (ms)", ax=line_ax, color="#4F46E5", alpha=0.7, label="Tempo", ) line_data.plot( x="Inferência", y="Média", ax=line_ax, color="#DC2626", linestyle="--", label="Média", ) line_ax.set_title( "Tempo de Inferência por Execução", pad=15, fontsize=12, color="#1f2937" ) line_ax.set_xlabel("Número da Inferência", color="#374151") line_ax.set_ylabel("Tempo (ms)", color="#374151") line_ax.tick_params(colors="#4b5563") line_ax.grid(True, linestyle="--", alpha=0.3) line_ax.legend(frameon=True, facecolor="#f0f0f5", edgecolor="none") hist_fig.tight_layout() line_fig.tight_layout() # Fechar as figuras para liberar memória plt.close(hist_fig) plt.close(line_fig) return hist_fig, line_fig def preprocess(self, img): # Convert PIL Image to cv2 format img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) # Get image dimensions self.img_height, self.img_width = img_cv2.shape[:2] # Convert back to RGB for processing img_rgb = cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB) # Resize img_resized = cv2.resize(img_rgb, (self.input_width, self.input_height)) # Normalize and transpose image_data = np.array(img_resized) / 255.0 image_data = np.transpose(image_data, (2, 0, 1)) image_data = np.expand_dims(image_data, axis=0).astype(np.float32) return image_data, img_cv2 def draw_detections(self, img, box, score, class_id): x1, y1, w, h = box self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3)) color = self.color_palette[class_id] cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2) label = f"{self.classes[class_id]}: {score:.2f}" (label_width, label_height), _ = cv2.getTextSize( label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1 ) label_x = x1 label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 cv2.rectangle( img, (int(label_x), int(label_y - label_height)), (int(label_x + label_width), int(label_y + label_height)), color, cv2.FILLED, ) cv2.putText( img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA, ) def postprocess(self, input_image, output, conf_thres, iou_thres): outputs = np.transpose(np.squeeze(output[0])) rows = outputs.shape[0] boxes = [] scores = [] class_ids = [] x_factor = self.img_width / self.input_width y_factor = self.img_height / self.input_height for i in range(rows): classes_scores = outputs[i][4:] max_score = np.amax(classes_scores) if max_score >= conf_thres: class_id = np.argmax(classes_scores) x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3] left = int((x - w / 2) * x_factor) top = int((y - h / 2) * y_factor) width = int(w * x_factor) height = int(h * y_factor) class_ids.append(class_id) scores.append(max_score) boxes.append([left, top, width, height]) indices = cv2.dnn.NMSBoxes(boxes, scores, conf_thres, iou_thres) for i in indices: box = boxes[i] score = scores[i] class_id = class_ids[i] self.draw_detections(input_image, box, score, class_id) return cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB) def detect(self, image, conf_thres=0.25, iou_thres=0.5): # Preprocess the image img_data, original_image = self.preprocess(image) # Run inference start_time = time.time() outputs = self.session.run(None, {self.session.get_inputs()[0].name: img_data}) inference_time = (time.time() - start_time) * 1000 # Convert to milliseconds # Postprocess the results output_image = self.postprocess(original_image, outputs, conf_thres, iou_thres) self.update_metrics(inference_time) return output_image, self.get_metrics() def detect_example(self, image, conf_thres=0.25, iou_thres=0.5): """Wrapper method for examples that returns only the image""" output_image, _ = self.detect(image, conf_thres, iou_thres) return output_image def create_gradio_interface(): # Download model if it doesn't exist if not os.path.exists(MODEL_PATH): download_model() # Initialize the detector detector = SignatureDetector(MODEL_PATH) css = """ .custom-button { background-color: #b0ffb8 !important; color: black !important; } .custom-button:hover { background-color: #b0ffb8b3 !important; } .container { max-width: 1200px !important; margin: auto !important; } .main-container { gap: 20px !important; } .metrics-container { padding: 1.5rem !important; border-radius: 0.75rem !important; background-color: #1f2937 !important; margin: 1rem 0 !important; box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1) !important; } .metrics-title { font-size: 1.25rem !important; font-weight: 600 !important; color: #1f2937 !important; margin-bottom: 1rem !important; } """ def process_image(image, conf_thres, iou_thres): if image is None: return None, None, None, None output_image, metrics = detector.detect(image, conf_thres, iou_thres) # Create plots data hist_data = pd.DataFrame({"Tempo (ms)": metrics["times"]}) indices = range( metrics["start_index"], metrics["start_index"] + len(metrics["times"]) ) line_data = pd.DataFrame( { "Inferência": indices, "Tempo (ms)": metrics["times"], "Média": [metrics["avg_time"]] * len(metrics["times"]), } ) # Criar plots hist_fig, line_fig = detector.create_plots(hist_data, line_data) return ( output_image, gr.update( value=f"Total de Inferências: {metrics['total_inferences']}", container=True, ), hist_fig, line_fig, ) def process_folder(files_path, conf_thres, iou_thres): if not files_path: return None, None, None, None valid_extensions = [".jpg", ".jpeg", ".png"] image_files = [ f for f in files_path if os.path.splitext(f.lower())[1] in valid_extensions ] if not image_files: return None, None, None, None for img_file in image_files: image = Image.open(img_file) yield process_image(image, conf_thres, iou_thres) with gr.Blocks( theme=gr.themes.Soft( primary_hue="indigo", secondary_hue="gray", neutral_hue="gray" ), css=css, ) as iface: gr.Markdown( """ # Tech4Humans - Detector de Assinaturas Este sistema utiliza o modelo [**YOLOv8s**](https://huggingface.co/tech4humans/yolov8s-signature-detector), especialmente ajustado para a detecção de assinaturas manuscritas em imagens de documentos. Com este detector, é possível identificar assinaturas em documentos digitais com elevada precisão em tempo real, sendo ideal para aplicações que envolvem validação, organização e processamento de documentos. --- """ ) with gr.Row(equal_height=True, elem_classes="main-container"): # Coluna da esquerda para controles e informações with gr.Column(scale=1): with gr.Tab("Imagem Única"): input_image = gr.Image( label="Faça o upload do seu documento", type="pil" ) with gr.Row(): clear_single_btn = gr.ClearButton([input_image], value="Limpar") detect_single_btn = gr.Button( "Detectar", elem_classes="custom-button" ) with gr.Tab("Pasta de Imagens"): input_folder = gr.File( label="Faça o upload de uma pasta com imagens", file_count="directory", type="filepath", ) with gr.Row(): clear_folder_btn = gr.ClearButton( [input_folder], value="Limpar" ) detect_folder_btn = gr.Button( "Detectar", elem_classes="custom-button" ) with gr.Group(): confidence_threshold = gr.Slider( minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Limiar de Confiança", info="Ajuste a pontuação mínima de confiança necessária para detecção.", ) iou_threshold = gr.Slider( minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="Limiar de IoU", info="Ajuste o limiar de Interseção sobre União para Non Maximum Suppression (NMS).", ) with gr.Column(scale=1): output_image = gr.Image(label="Resultados da Detecção") with gr.Accordion("Exemplos", open=True): gr.Examples( label="Exemplos de Imagens", examples=[ ["assets/images/example_{i}.jpg".format(i=i)] for i in range( 0, len(os.listdir(os.path.join("assets", "images"))) ) ], inputs=input_image, outputs=output_image, fn=detector.detect_example, cache_examples=True, cache_mode="lazy", ) with gr.Row(elem_classes="metrics-container"): with gr.Column(scale=1): total_inferences = gr.Textbox( label="Total de Inferências", show_copy_button=True, container=True ) hist_plot = gr.Plot(label="Distribuição dos Tempos", container=True) with gr.Column(scale=1): line_plot = gr.Plot(label="Histórico de Tempos", container=True) with gr.Row(elem_classes="container"): gr.Markdown( """ --- ## Sobre o Projeto Este projeto utiliza o modelo YOLOv8s ajustado para detecção de assinaturas manuscritas em imagens de documentos. Ele foi treinado com dados provenientes dos conjuntos [Tobacco800](https://paperswithcode.com/dataset/tobacco-800) e [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up), passando por processos de pré-processamento e aumentação de dados. ### Principais Métricas: - **Precisão (Precision):** 94,74% - **Revocação (Recall):** 89,72% - **mAP@50:** 94,50% - **mAP@50-95:** 67,35% - **Tempo de Inferência (CPU):** 171,56 ms O processo completo de treinamento, ajuste de hiperparâmetros, e avaliação do modelo pode ser consultado em detalhes no repositório abaixo. [Leia o README completo no Hugging Face Models](https://huggingface.co/tech4humans/yolov8s-signature-detector) --- **Desenvolvido por [Tech4Humans](https://www.tech4h.com.br/)** | **Modelo:** [YOLOv8s](https://huggingface.co/tech4humans/yolov8s-signature-detector) | **Datasets:** [Tobacco800](https://paperswithcode.com/dataset/tobacco-800), [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up) """ ) clear_single_btn.add([output_image]) clear_folder_btn.add([output_image]) detect_single_btn.click( fn=process_image, inputs=[input_image, confidence_threshold, iou_threshold], outputs=[output_image, total_inferences, hist_plot, line_plot], ) detect_folder_btn.click( fn=process_folder, inputs=[input_folder, confidence_threshold, iou_threshold], outputs=[output_image, total_inferences, hist_plot, line_plot], ) # Carregar métricas iniciais ao carregar a página iface.load( fn=detector.load_initial_metrics, inputs=None, outputs=[output_image, total_inferences, hist_plot, line_plot], ) return iface if __name__ == "__main__": if not os.path.exists(DATABASE_PATH): os.makedirs(DATABASE_DIR, exist_ok=True) iface = create_gradio_interface() iface.launch()