import cv2 import numpy as np import pandas as pd import time import matplotlib.pyplot as plt import onnxruntime as ort from collections import deque import gradio as gr import os from huggingface_hub import hf_hub_download # Model info REPO_ID = "tech4humans/yolov8s-signature-detector" FILENAME = "tune/trial_10/weights/best.onnx" MODEL_DIR = "model" MODEL_PATH = os.path.join(MODEL_DIR, "model.onnx") def download_model(): """Download the model using Hugging Face Hub""" # Ensure model directory exists os.makedirs(MODEL_DIR, exist_ok=True) try: print(f"Downloading model from {REPO_ID}...") # Download the model file from Hugging Face Hub model_path = hf_hub_download( repo_id=REPO_ID, filename=FILENAME, local_dir=MODEL_DIR, local_dir_use_symlinks=False, force_download=True, cache_dir=None, ) # Move the file to the correct location if it's not there already if os.path.exists(model_path) and model_path != MODEL_PATH: os.rename(model_path, MODEL_PATH) # Remove empty directories if they exist empty_dir = os.path.join(MODEL_DIR, "tune") if os.path.exists(empty_dir): import shutil shutil.rmtree(empty_dir) print("Model downloaded successfully!") return MODEL_PATH except Exception as e: print(f"Error downloading model: {e}") raise e class SignatureDetector: def __init__(self, model_path): self.model_path = model_path self.classes = ["signature"] self.input_width = 640 self.input_height = 640 # Initialize ONNX Runtime session self.session = ort.InferenceSession( MODEL_PATH, providers=["CPUExecutionProvider"] ) # Initialize metrics tracking self.inference_times = deque(maxlen=50) # Store last 50 inference times self.total_inferences = 0 self.avg_inference_time = 0 def update_metrics(self, inference_time): self.inference_times.append(inference_time) self.total_inferences += 1 self.avg_inference_time = sum(self.inference_times) / len(self.inference_times) def get_metrics(self): return { "times": list(self.inference_times), "total_inferences": self.total_inferences, "avg_time": self.avg_inference_time, } def preprocess(self, img): # Convert PIL Image to cv2 format img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) # Get image dimensions self.img_height, self.img_width = img_cv2.shape[:2] # Convert back to RGB for processing img_rgb = cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB) # Resize img_resized = cv2.resize(img_rgb, (self.input_width, self.input_height)) # Normalize and transpose image_data = np.array(img_resized) / 255.0 image_data = np.transpose(image_data, (2, 0, 1)) image_data = np.expand_dims(image_data, axis=0).astype(np.float32) return image_data, img_cv2 def draw_detections(self, img, box, score, class_id): x1, y1, w, h = box self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3)) color = self.color_palette[class_id] cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2) label = f"{self.classes[class_id]}: {score:.2f}" (label_width, label_height), _ = cv2.getTextSize( label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1 ) label_x = x1 label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 cv2.rectangle( img, (int(label_x), int(label_y - label_height)), (int(label_x + label_width), int(label_y + label_height)), color, cv2.FILLED, ) cv2.putText( img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA, ) def postprocess(self, input_image, output, conf_thres, iou_thres): outputs = np.transpose(np.squeeze(output[0])) rows = outputs.shape[0] boxes = [] scores = [] class_ids = [] x_factor = self.img_width / self.input_width y_factor = self.img_height / self.input_height for i in range(rows): classes_scores = outputs[i][4:] max_score = np.amax(classes_scores) if max_score >= conf_thres: class_id = np.argmax(classes_scores) x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3] left = int((x - w / 2) * x_factor) top = int((y - h / 2) * y_factor) width = int(w * x_factor) height = int(h * y_factor) class_ids.append(class_id) scores.append(max_score) boxes.append([left, top, width, height]) indices = cv2.dnn.NMSBoxes(boxes, scores, conf_thres, iou_thres) for i in indices: box = boxes[i] score = scores[i] class_id = class_ids[i] self.draw_detections(input_image, box, score, class_id) return cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB) def detect(self, image, conf_thres=0.25, iou_thres=0.5): # Preprocess the image img_data, original_image = self.preprocess(image) # Run inference start_time = time.time() outputs = self.session.run(None, {self.session.get_inputs()[0].name: img_data}) inference_time = (time.time() - start_time) * 1000 # Convert to milliseconds # Postprocess the results output_image = self.postprocess(original_image, outputs, conf_thres, iou_thres) self.update_metrics(inference_time) return output_image, self.get_metrics() def detect_example(self, image, conf_thres=0.25, iou_thres=0.5): """Wrapper method for examples that returns only the image""" output_image, _ = self.detect(image, conf_thres, iou_thres) return output_image def create_gradio_interface(): # Download model if it doesn't exist if not os.path.exists(MODEL_PATH): download_model() # Initialize the detector detector = SignatureDetector(MODEL_PATH) css = """ .custom-button { background-color: #b0ffb8 !important; color: black !important; } .custom-button:hover { background-color: #b0ffb8b3 !important; } .container { max-width: 1200px !important; margin: auto !important; } .main-container { gap: 20px !important; } .metrics-container { padding: 1.5rem !important; border-radius: 0.75rem !important; background-color: #1f2937 !important; margin: 1rem 0 !important; box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1) !important; } .metrics-title { font-size: 1.25rem !important; font-weight: 600 !important; color: #1f2937 !important; margin-bottom: 1rem !important; } """ def process_image(image, conf_thres, iou_thres): if image is None: return None, None, None, None output_image, metrics = detector.detect(image, conf_thres, iou_thres) # Create plots data hist_data = pd.DataFrame({"Tempo (ms)": metrics["times"]}) line_data = pd.DataFrame( { "Inferência": range(len(metrics["times"])), "Tempo (ms)": metrics["times"], "Média": [metrics["avg_time"]] * len(metrics["times"]), } ) # Limpar figuras existentes plt.close("all") # Configuração do estilo dos plots plt.style.use("dark_background") # Criar figura do histograma hist_fig, hist_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5") hist_ax.set_facecolor("#f0f0f5") hist_data.hist( bins=20, ax=hist_ax, color="#4F46E5", alpha=0.7, edgecolor="white" ) hist_ax.set_title( "Distribuição dos Tempos de Inferência", pad=15, fontsize=12, color="#1f2937", ) hist_ax.set_xlabel("Tempo (ms)", color="#374151") hist_ax.set_ylabel("Frequência", color="#374151") hist_ax.tick_params(colors="#4b5563") hist_ax.grid(True, linestyle="--", alpha=0.3) # Criar figura do gráfico de linha line_fig, line_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5") line_ax.set_facecolor("#f0f0f5") line_data.plot( x="Inferência", y="Tempo (ms)", ax=line_ax, color="#4F46E5", alpha=0.7, label="Tempo", ) line_data.plot( x="Inferência", y="Média", ax=line_ax, color="#DC2626", linestyle="--", label="Média", ) line_ax.set_title( "Tempo de Inferência por Execução", pad=15, fontsize=12, color="#1f2937" ) line_ax.set_xlabel("Número da Inferência", color="#374151") line_ax.set_ylabel("Tempo (ms)", color="#374151") line_ax.tick_params(colors="#4b5563") line_ax.grid(True, linestyle="--", alpha=0.3) line_ax.legend(frameon=True, facecolor="#f0f0f5", edgecolor="none") # Ajustar layout hist_fig.tight_layout() line_fig.tight_layout() # Fechar as figuras para liberar memória plt.close(hist_fig) plt.close(line_fig) return ( output_image, gr.update( value=f"Total de Inferências: {metrics['total_inferences']}", container=True, ), hist_fig, line_fig, ) with gr.Blocks( theme=gr.themes.Soft( primary_hue="indigo", secondary_hue="gray", neutral_hue="gray" ), css=css, ) as iface: gr.Markdown( """ # Tech4Humans - Detector de Assinaturas Este sistema utiliza o modelo [**YOLOv8s**](https://huggingface.co/tech4humans/yolov8s-signature-detector), especialmente ajustado para a detecção de assinaturas manuscritas em imagens de documentos. Com este detector, é possível identificar assinaturas em documentos digitais com elevada precisão em tempo real, sendo ideal para aplicações que envolvem validação, organização e processamento de documentos. --- """ ) with gr.Row(equal_height=True, elem_classes="main-container"): # Coluna da esquerda para controles e informações with gr.Column(scale=1): input_image = gr.Image( label="Faça o upload do seu documento", type="pil" ) with gr.Row(): clear_btn = gr.ClearButton([input_image], value="Limpar") submit_btn = gr.Button("Detectar", elem_classes="custom-button") with gr.Group(): confidence_threshold = gr.Slider( minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Limiar de Confiança", info="Ajuste a pontuação mínima de confiança necessária para detecção.", ) iou_threshold = gr.Slider( minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="Limiar de IoU", info="Ajuste o limiar de Interseção sobre União para Non Maximum Suppression (NMS).", ) with gr.Column(scale=1): output_image = gr.Image(label="Resultados da Detecção") with gr.Accordion("Exemplos", open=True): gr.Examples( examples=[ ["assets/images/example_{i}.jpg".format(i=i)] for i in range( 0, len(os.listdir(os.path.join("assets", "images"))) ) ], inputs=input_image, outputs=output_image, fn=detector.detect_example, cache_examples=True, cache_mode="lazy", ) with gr.Row(elem_classes="metrics-container"): with gr.Column(scale=1): total_inferences = gr.Textbox( label="Total de Inferências", show_copy_button=True, container=True ) hist_plot = gr.Plot(label="Distribuição dos Tempos", container=True) with gr.Column(scale=1): line_plot = gr.Plot(label="Histórico de Tempos", container=True) with gr.Row(elem_classes="container"): gr.Markdown( """ --- ## Sobre o Projeto Este projeto utiliza o modelo YOLOv8s ajustado para detecção de assinaturas manuscritas em imagens de documentos. Ele foi treinado com dados provenientes dos conjuntos [Tobacco800](https://paperswithcode.com/dataset/tobacco-800) e [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up), passando por processos de pré-processamento e aumentação de dados. ### Principais Métricas: - **Precisão (Precision):** 94,74% - **Revocação (Recall):** 89,72% - **mAP@50:** 94,50% - **mAP@50-95:** 67,35% - **Tempo de Inferência (CPU):** 171,56 ms O processo completo de treinamento, ajuste de hiperparâmetros, e avaliação do modelo pode ser consultado em detalhes no repositório abaixo. [Leia o README completo no Hugging Face Models](https://huggingface.co/tech4humans/yolov8s-signature-detector) --- **Desenvolvido por [Tech4Humans](https://www.tech4h.com.br/)** | **Modelo:** [YOLOv8s](https://huggingface.co/tech4humans/yolov8s-signature-detector) | **Datasets:** [Tobacco800](https://paperswithcode.com/dataset/tobacco-800), [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up) """ ) clear_btn.add([output_image, total_inferences, hist_plot, line_plot]) submit_btn.click( fn=process_image, inputs=[input_image, confidence_threshold, iou_threshold], outputs=[output_image, total_inferences, hist_plot, line_plot], ) return iface if __name__ == "__main__": iface = create_gradio_interface() iface.launch()