|
import cv2 |
|
import numpy as np |
|
import onnxruntime as ort |
|
import gradio as gr |
|
import os |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
REPO_ID = "tech4humans/yolov8s-signature-detector" |
|
FILENAME = "tune/trial_10/weights/best.onnx" |
|
MODEL_DIR = "model" |
|
MODEL_PATH = os.path.join(MODEL_DIR, "model.onnx") |
|
|
|
def download_model(): |
|
"""Download the model using Hugging Face Hub""" |
|
|
|
os.makedirs(MODEL_DIR, exist_ok=True) |
|
|
|
try: |
|
print(f"Downloading model from {REPO_ID}...") |
|
|
|
model_path = hf_hub_download( |
|
repo_id=REPO_ID, |
|
filename=FILENAME, |
|
local_dir=MODEL_DIR, |
|
local_dir_use_symlinks=False, |
|
force_download=True, |
|
cache_dir=None |
|
) |
|
|
|
|
|
if os.path.exists(model_path) and model_path != MODEL_PATH: |
|
os.rename(model_path, MODEL_PATH) |
|
|
|
|
|
empty_dir = os.path.join(MODEL_DIR, "tune") |
|
if os.path.exists(empty_dir): |
|
import shutil |
|
shutil.rmtree(empty_dir) |
|
|
|
print("Model downloaded successfully!") |
|
return MODEL_PATH |
|
|
|
except Exception as e: |
|
print(f"Error downloading model: {str(e)}") |
|
raise e |
|
|
|
class SignatureDetector: |
|
def __init__(self, model_path): |
|
self.model_path = model_path |
|
self.classes = ["signature"] |
|
self.input_width = 640 |
|
self.input_height = 640 |
|
|
|
|
|
self.session = ort.InferenceSession(MODEL_PATH, providers=["CPUExecutionProvider"]) |
|
|
|
def preprocess(self, img): |
|
|
|
img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) |
|
|
|
|
|
self.img_height, self.img_width = img_cv2.shape[:2] |
|
|
|
|
|
img_rgb = cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
img_resized = cv2.resize(img_rgb, (self.input_width, self.input_height)) |
|
|
|
|
|
image_data = np.array(img_resized) / 255.0 |
|
image_data = np.transpose(image_data, (2, 0, 1)) |
|
image_data = np.expand_dims(image_data, axis=0).astype(np.float32) |
|
|
|
return image_data, img_cv2 |
|
|
|
def draw_detections(self, img, box, score, class_id): |
|
x1, y1, w, h = box |
|
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3)) |
|
color = self.color_palette[class_id] |
|
|
|
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2) |
|
|
|
label = f"{self.classes[class_id]}: {score:.2f}" |
|
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) |
|
|
|
label_x = x1 |
|
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 |
|
|
|
cv2.rectangle( |
|
img, |
|
(int(label_x), int(label_y - label_height)), |
|
(int(label_x + label_width), int(label_y + label_height)), |
|
color, |
|
cv2.FILLED |
|
) |
|
|
|
cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) |
|
|
|
def postprocess(self, input_image, output, conf_thres, iou_thres): |
|
outputs = np.transpose(np.squeeze(output[0])) |
|
rows = outputs.shape[0] |
|
|
|
boxes = [] |
|
scores = [] |
|
class_ids = [] |
|
|
|
x_factor = self.img_width / self.input_width |
|
y_factor = self.img_height / self.input_height |
|
|
|
for i in range(rows): |
|
classes_scores = outputs[i][4:] |
|
max_score = np.amax(classes_scores) |
|
|
|
if max_score >= conf_thres: |
|
class_id = np.argmax(classes_scores) |
|
x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3] |
|
|
|
left = int((x - w / 2) * x_factor) |
|
top = int((y - h / 2) * y_factor) |
|
width = int(w * x_factor) |
|
height = int(h * y_factor) |
|
|
|
class_ids.append(class_id) |
|
scores.append(max_score) |
|
boxes.append([left, top, width, height]) |
|
|
|
indices = cv2.dnn.NMSBoxes(boxes, scores, conf_thres, iou_thres) |
|
|
|
for i in indices: |
|
box = boxes[i] |
|
score = scores[i] |
|
class_id = class_ids[i] |
|
self.draw_detections(input_image, box, score, class_id) |
|
|
|
return cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB) |
|
|
|
def detect(self, image, conf_thres=0.25, iou_thres=0.5): |
|
|
|
img_data, original_image = self.preprocess(image) |
|
|
|
|
|
outputs = self.session.run(None, {self.session.get_inputs()[0].name: img_data}) |
|
|
|
|
|
output_image = self.postprocess(original_image, outputs, conf_thres, iou_thres) |
|
|
|
return output_image |
|
|
|
def create_gradio_interface(): |
|
|
|
if not os.path.exists(MODEL_PATH): |
|
download_model() |
|
|
|
|
|
detector = SignatureDetector(MODEL_PATH) |
|
|
|
|
|
css = """ |
|
.custom-button { |
|
background-color: #b0ffb8 !important; |
|
color: black !important; |
|
} |
|
.custom-button:hover { |
|
background-color: #b0ffb8b3 !important; |
|
} |
|
""" |
|
|
|
with gr.Blocks( |
|
theme = gr.themes.Soft( |
|
primary_hue="indigo", |
|
secondary_hue="gray", |
|
neutral_hue="gray" |
|
), |
|
css=css |
|
) as iface: |
|
gr.Markdown( |
|
""" |
|
# Tech4Humans - Detector de Assinaturas |
|
|
|
Este sistema utiliza o modelo [**YOLOv8s**](https://huggingface.co/tech4humans/yolov8s-signature-detector), especialmente ajustado para a detecção de assinaturas manuscritas em imagens de documentos. |
|
O modelo foi treinado com dados provenientes de dois conjuntos públicos — [**Tobacco800**](https://paperswithcode.com/dataset/tobacco-800) e [**signatures-xc8up**](https://universe.roboflow.com/roboflow-100/signatures-xc8up) — e inclui robustos |
|
mecanismos de pré-processamento e aumento de dados para garantir alta precisão e generalização. |
|
|
|
Com este detector, é possível identificar assinaturas em documentos digitais com elevada precisão em tempo real, sendo ideal para |
|
aplicações que envolvem validação, organização e processamento de documentos. |
|
|
|
--- |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(label="Faça o upload do seu documento", type="pil") |
|
|
|
with gr.Row(): |
|
clear_btn = gr.ClearButton([input_image], value="Limpar") |
|
submit_btn = gr.Button("Detectar", elem_classes="custom-button") |
|
|
|
confidence_threshold = gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
value=0.25, |
|
step=0.05, |
|
label="Limiar de Confiança", |
|
info="Ajuste a pontuação mínima de confiança necessária para detecção." |
|
) |
|
iou_threshold = gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
value=0.5, |
|
step=0.05, |
|
label="Limiar de IoU", |
|
info="Ajuste o limiar de Interseção sobre União para Non Maximum Suppression (NMS)." |
|
) |
|
|
|
output_image = gr.Image(label="Resultados da Detecção") |
|
|
|
clear_btn.add(output_image) |
|
|
|
gr.Examples( |
|
examples=[ |
|
["assets/images/example_{i}.jpg".format(i=i)] for i in range(0, len(os.listdir(os.path.join("assets", "images")))+1) |
|
], |
|
inputs=input_image, |
|
outputs=output_image, |
|
fn=detector.detect, |
|
label="Exemplos", |
|
cache_examples=True, |
|
cache_mode='lazy' |
|
) |
|
|
|
|
|
submit_btn.click( |
|
fn=detector.detect, |
|
inputs=[input_image, confidence_threshold, iou_threshold], |
|
outputs=output_image, |
|
) |
|
|
|
gr.Markdown( |
|
""" |
|
--- |
|
## Sobre o Modelo e Resultados |
|
|
|
Este projeto utiliza o modelo YOLOv8s ajustado para detecção de assinaturas manuscritas em imagens de documentos. Ele foi treinado com dados provenientes dos conjuntos [Tobacco800](https://paperswithcode.com/dataset/tobacco-800) e [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up), passando por processos de pré-processamento e aumentação de dados. |
|
|
|
### Principais Métricas: |
|
- **Precisão (Precision):** 94,74% |
|
- **Revocação (Recall):** 89,72% |
|
- **mAP@50:** 94,50% |
|
- **mAP@50-95:** 67,35% |
|
- **Tempo de Inferência (CPU):** 171,56 ms |
|
|
|
O processo completo de treinamento, ajuste de hiperparâmetros, e avaliação do modelo pode ser consultado em detalhes no repositório abaixo. |
|
|
|
[Leia o README completo no Hugging Face Models](https://huggingface.co/tech4humans/yolov8s-signature-detector) |
|
|
|
--- |
|
""" |
|
) |
|
|
|
gr.Markdown( |
|
""" |
|
**Desenvolvido por [Tech4Humans](https://www.tech4h.com.br/)** | **Modelo:** [YOLOv8s](https://huggingface.co/tech4humans/yolov8s-signature-detector) | **Datasets:** [Tobacco800](https://paperswithcode.com/dataset/tobacco-800), [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up) |
|
""" |
|
) |
|
|
|
return iface |
|
|
|
if __name__ == "__main__": |
|
iface = create_gradio_interface() |
|
iface.launch() |