
feat: Update signature detection parameters and enhance Gradio interface with dynamic example loading
4c0300b
unverified
import cv2 | |
import numpy as np | |
import onnxruntime as ort | |
import gradio as gr | |
import os | |
from huggingface_hub import hf_hub_download | |
# Model info | |
REPO_ID = "tech4humans/yolov8s-signature-detector" | |
FILENAME = "tune/trial_10/weights/best.onnx" | |
MODEL_DIR = "model" | |
MODEL_PATH = os.path.join(MODEL_DIR, "model.onnx") | |
def download_model(): | |
"""Download the model using Hugging Face Hub""" | |
# Ensure model directory exists | |
os.makedirs(MODEL_DIR, exist_ok=True) | |
try: | |
print(f"Downloading model from {REPO_ID}...") | |
# Download the model file from Hugging Face Hub | |
model_path = hf_hub_download( | |
repo_id=REPO_ID, | |
filename=FILENAME, | |
local_dir=MODEL_DIR, | |
local_dir_use_symlinks=False, | |
force_download=True, | |
cache_dir=None | |
) | |
# Move the file to the correct location if it's not there already | |
if os.path.exists(model_path) and model_path != MODEL_PATH: | |
os.rename(model_path, MODEL_PATH) | |
# Remove empty directories if they exist | |
empty_dir = os.path.join(MODEL_DIR, "tune") | |
if os.path.exists(empty_dir): | |
import shutil | |
shutil.rmtree(empty_dir) | |
print("Model downloaded successfully!") | |
return MODEL_PATH | |
except Exception as e: | |
print(f"Error downloading model: {str(e)}") | |
raise e | |
class SignatureDetector: | |
def __init__(self, model_path): | |
self.model_path = model_path | |
self.classes = ["signature"] | |
self.input_width = 640 | |
self.input_height = 640 | |
# Initialize ONNX Runtime session | |
self.session = ort.InferenceSession(MODEL_PATH, providers=["CPUExecutionProvider"]) | |
def preprocess(self, img): | |
# Convert PIL Image to cv2 format | |
img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
# Get image dimensions | |
self.img_height, self.img_width = img_cv2.shape[:2] | |
# Convert back to RGB for processing | |
img_rgb = cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB) | |
# Resize | |
img_resized = cv2.resize(img_rgb, (self.input_width, self.input_height)) | |
# Normalize and transpose | |
image_data = np.array(img_resized) / 255.0 | |
image_data = np.transpose(image_data, (2, 0, 1)) | |
image_data = np.expand_dims(image_data, axis=0).astype(np.float32) | |
return image_data, img_cv2 | |
def draw_detections(self, img, box, score, class_id): | |
x1, y1, w, h = box | |
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3)) | |
color = self.color_palette[class_id] | |
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2) | |
label = f"{self.classes[class_id]}: {score:.2f}" | |
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) | |
label_x = x1 | |
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 | |
cv2.rectangle( | |
img, | |
(int(label_x), int(label_y - label_height)), | |
(int(label_x + label_width), int(label_y + label_height)), | |
color, | |
cv2.FILLED | |
) | |
cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) | |
def postprocess(self, input_image, output, conf_thres, iou_thres): | |
outputs = np.transpose(np.squeeze(output[0])) | |
rows = outputs.shape[0] | |
boxes = [] | |
scores = [] | |
class_ids = [] | |
x_factor = self.img_width / self.input_width | |
y_factor = self.img_height / self.input_height | |
for i in range(rows): | |
classes_scores = outputs[i][4:] | |
max_score = np.amax(classes_scores) | |
if max_score >= conf_thres: | |
class_id = np.argmax(classes_scores) | |
x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3] | |
left = int((x - w / 2) * x_factor) | |
top = int((y - h / 2) * y_factor) | |
width = int(w * x_factor) | |
height = int(h * y_factor) | |
class_ids.append(class_id) | |
scores.append(max_score) | |
boxes.append([left, top, width, height]) | |
indices = cv2.dnn.NMSBoxes(boxes, scores, conf_thres, iou_thres) | |
for i in indices: | |
box = boxes[i] | |
score = scores[i] | |
class_id = class_ids[i] | |
self.draw_detections(input_image, box, score, class_id) | |
return cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB) | |
def detect(self, image, conf_thres=0.25, iou_thres=0.5): | |
# Preprocess the image | |
img_data, original_image = self.preprocess(image) | |
# Run inference | |
outputs = self.session.run(None, {self.session.get_inputs()[0].name: img_data}) | |
# Postprocess the results | |
output_image = self.postprocess(original_image, outputs, conf_thres, iou_thres) | |
return output_image | |
def create_gradio_interface(): | |
# Download model if it doesn't exist | |
if not os.path.exists(MODEL_PATH): | |
download_model() | |
# Initialize the detector | |
detector = SignatureDetector(MODEL_PATH) | |
css = """ | |
.custom-button { | |
background-color: #b0ffb8 !important; | |
color: black !important; | |
} | |
.custom-button:hover { | |
background-color: #b0ffb8b3 !important; | |
} | |
""" | |
with gr.Blocks( | |
theme = gr.themes.Soft( | |
primary_hue="indigo", | |
secondary_hue="gray", | |
neutral_hue="gray" | |
), | |
css=css | |
) as iface: | |
gr.Markdown( | |
""" | |
# Tech4Humans - Detector de Assinaturas | |
Este sistema utiliza o modelo [**YOLOv8s**](https://huggingface.co/tech4humans/yolov8s-signature-detector), especialmente ajustado para a detecção de assinaturas manuscritas em imagens de documentos. | |
O modelo foi treinado com dados provenientes de dois conjuntos públicos — [**Tobacco800**](https://paperswithcode.com/dataset/tobacco-800) e [**signatures-xc8up**](https://universe.roboflow.com/roboflow-100/signatures-xc8up) — e inclui robustos | |
mecanismos de pré-processamento e aumento de dados para garantir alta precisão e generalização. | |
Com este detector, é possível identificar assinaturas em documentos digitais com elevada precisão em tempo real, sendo ideal para | |
aplicações que envolvem validação, organização e processamento de documentos. | |
--- | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): # Coluna para a imagem de entrada e controles | |
input_image = gr.Image(label="Faça o upload do seu documento", type="pil") | |
with gr.Row(): # Linha para os botões | |
clear_btn = gr.ClearButton([input_image], value="Limpar") | |
submit_btn = gr.Button("Detectar", elem_classes="custom-button") | |
confidence_threshold = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.25, | |
step=0.05, | |
label="Limiar de Confiança", | |
info="Ajuste a pontuação mínima de confiança necessária para detecção." | |
) | |
iou_threshold = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.5, | |
step=0.05, | |
label="Limiar de IoU", | |
info="Ajuste o limiar de Interseção sobre União para Non Maximum Suppression (NMS)." | |
) | |
output_image = gr.Image(label="Resultados da Detecção") # Em outra coluna | |
clear_btn.add(output_image) | |
gr.Examples( | |
examples=[ | |
["assets/images/example_{i}.jpg".format(i=i)] for i in range(1, len(os.listdir(os.path.join("assets", "images")))+1) | |
], | |
inputs=input_image, | |
outputs=output_image, | |
fn=detector.detect, | |
label="Exemplos", | |
cache_examples=True, | |
cache_mode='lazy' | |
) | |
submit_btn.click( | |
fn=detector.detect, | |
inputs=[input_image, confidence_threshold, iou_threshold], | |
outputs=output_image, | |
) | |
gr.Markdown( | |
""" | |
--- | |
## Sobre o Modelo e Resultados | |
Este projeto utiliza o modelo YOLOv8s ajustado para detecção de assinaturas manuscritas em imagens de documentos. Ele foi treinado com dados provenientes dos conjuntos [Tobacco800](https://paperswithcode.com/dataset/tobacco-800) e [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up), passando por processos de pré-processamento e aumentação de dados. | |
### Principais Métricas: | |
- **Precisão (Precision):** 94,74% | |
- **Revocação (Recall):** 89,72% | |
- **mAP@50:** 94,50% | |
- **mAP@50-95:** 67,35% | |
- **Tempo de Inferência (CPU):** 171,56 ms | |
O processo completo de treinamento, ajuste de hiperparâmetros, e avaliação do modelo pode ser consultado em detalhes no repositório abaixo. | |
[Leia o README completo no Hugging Face Models](https://huggingface.co/tech4humans/yolov8s-signature-detector) | |
--- | |
""" | |
) | |
gr.Markdown( | |
""" | |
**Desenvolvido por [Tech4Humans](https://www.tech4h.com.br/)** | **Modelo:** [YOLOv8s](https://huggingface.co/tech4humans/yolov8s-signature-detector) | **Datasets:** [Tobacco800](https://paperswithcode.com/dataset/tobacco-800), [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up) | |
""" | |
) | |
return iface | |
if __name__ == "__main__": | |
iface = create_gradio_interface() | |
iface.launch() |