
feat: adicionar armazenamento de métricas de inferência em banco de dados SQLite e criar gráficos de desempenho
4014f2e
import cv2 | |
import numpy as np | |
import pandas as pd | |
import time | |
import matplotlib.pyplot as plt | |
import onnxruntime as ort | |
from collections import deque | |
import gradio as gr | |
import os | |
import sqlite3 | |
from datetime import datetime | |
from huggingface_hub import hf_hub_download | |
# Model info | |
REPO_ID = "tech4humans/yolov8s-signature-detector" | |
FILENAME = "tune/trial_10/weights/best.onnx" | |
MODEL_DIR = "model" | |
MODEL_PATH = os.path.join(MODEL_DIR, "model.onnx") | |
def download_model(): | |
"""Download the model using Hugging Face Hub""" | |
# Ensure model directory exists | |
os.makedirs(MODEL_DIR, exist_ok=True) | |
try: | |
print(f"Downloading model from {REPO_ID}...") | |
# Download the model file from Hugging Face Hub | |
model_path = hf_hub_download( | |
repo_id=REPO_ID, | |
filename=FILENAME, | |
local_dir=MODEL_DIR, | |
local_dir_use_symlinks=False, | |
force_download=True, | |
cache_dir=None, | |
) | |
# Move the file to the correct location if it's not there already | |
if os.path.exists(model_path) and model_path != MODEL_PATH: | |
os.rename(model_path, MODEL_PATH) | |
# Remove empty directories if they exist | |
empty_dir = os.path.join(MODEL_DIR, "tune") | |
if os.path.exists(empty_dir): | |
import shutil | |
shutil.rmtree(empty_dir) | |
print("Model downloaded successfully!") | |
return MODEL_PATH | |
except Exception as e: | |
print(f"Error downloading model: {e}") | |
raise e | |
class MetricsStorage: | |
def __init__(self, db_path="metrics.db"): | |
self.db_path = db_path | |
self.setup_database() | |
def setup_database(self): | |
"""Initialize the SQLite database and create tables if they don't exist""" | |
with sqlite3.connect(self.db_path) as conn: | |
cursor = conn.cursor() | |
cursor.execute( | |
""" | |
CREATE TABLE IF NOT EXISTS inference_metrics ( | |
id INTEGER PRIMARY KEY AUTOINCREMENT, | |
inference_time REAL, | |
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP | |
) | |
""" | |
) | |
conn.commit() | |
def add_metric(self, inference_time): | |
"""Add a new inference time measurement to the database""" | |
with sqlite3.connect(self.db_path) as conn: | |
cursor = conn.cursor() | |
cursor.execute( | |
"INSERT INTO inference_metrics (inference_time) VALUES (?)", | |
(inference_time,), | |
) | |
conn.commit() | |
def get_recent_metrics(self, limit=50): | |
"""Get the most recent metrics from the database""" | |
with sqlite3.connect(self.db_path) as conn: | |
cursor = conn.cursor() | |
cursor.execute( | |
"SELECT inference_time FROM inference_metrics ORDER BY timestamp DESC LIMIT ?", | |
(limit,), | |
) | |
results = cursor.fetchall() | |
return [r[0] for r in results] | |
def get_total_inferences(self): | |
"""Get the total number of inferences recorded""" | |
with sqlite3.connect(self.db_path) as conn: | |
cursor = conn.cursor() | |
cursor.execute("SELECT COUNT(*) FROM inference_metrics") | |
return cursor.fetchone()[0] | |
def get_average_time(self, limit=50): | |
"""Get the average inference time from the most recent entries""" | |
with sqlite3.connect(self.db_path) as conn: | |
cursor = conn.cursor() | |
cursor.execute( | |
"SELECT AVG(inference_time) FROM (SELECT inference_time FROM inference_metrics ORDER BY timestamp DESC LIMIT ?)", | |
(limit,), | |
) | |
result = cursor.fetchone()[0] | |
return result if result is not None else 0 | |
class SignatureDetector: | |
def __init__(self, model_path): | |
self.model_path = model_path | |
self.classes = ["signature"] | |
self.input_width = 640 | |
self.input_height = 640 | |
# Initialize ONNX Runtime session | |
self.session = ort.InferenceSession( | |
MODEL_PATH, providers=["CPUExecutionProvider"] | |
) | |
self.metrics_storage = MetricsStorage() | |
def update_metrics(self, inference_time): | |
"""Update metrics in persistent storage""" | |
self.metrics_storage.add_metric(inference_time) | |
def get_metrics(self): | |
"""Get current metrics from storage""" | |
return { | |
"times": self.metrics_storage.get_recent_metrics(), | |
"total_inferences": self.metrics_storage.get_total_inferences(), | |
"avg_time": self.metrics_storage.get_average_time(), | |
} | |
def load_initial_metrics(self): | |
"""Load initial metrics for display""" | |
metrics = self.get_metrics() | |
if not metrics["times"]: # Se não houver dados | |
return None, None, None, None | |
# Criar plots data | |
hist_data = pd.DataFrame({"Tempo (ms)": metrics["times"]}) | |
line_data = pd.DataFrame( | |
{ | |
"Inferência": range(len(metrics["times"])), | |
"Tempo (ms)": metrics["times"], | |
"Média": [metrics["avg_time"]] * len(metrics["times"]), | |
} | |
) | |
# Criar plots | |
hist_fig, line_fig = self.create_plots(hist_data, line_data) | |
return ( | |
None, # output_image | |
f"Total de Inferências: {metrics['total_inferences']}", | |
hist_fig, | |
line_fig, | |
) | |
def create_plots(self, hist_data, line_data): | |
"""Helper method to create plots""" | |
plt.style.use("dark_background") | |
# Histograma | |
hist_fig, hist_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5") | |
hist_ax.set_facecolor("#f0f0f5") | |
hist_data.hist( | |
bins=20, ax=hist_ax, color="#4F46E5", alpha=0.7, edgecolor="white" | |
) | |
hist_ax.set_title( | |
"Distribuição dos Tempos de Inferência", | |
pad=15, | |
fontsize=12, | |
color="#1f2937", | |
) | |
hist_ax.set_xlabel("Tempo (ms)", color="#374151") | |
hist_ax.set_ylabel("Frequência", color="#374151") | |
hist_ax.tick_params(colors="#4b5563") | |
hist_ax.grid(True, linestyle="--", alpha=0.3) | |
# Gráfico de linha | |
line_fig, line_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5") | |
line_ax.set_facecolor("#f0f0f5") | |
line_data.plot( | |
x="Inferência", | |
y="Tempo (ms)", | |
ax=line_ax, | |
color="#4F46E5", | |
alpha=0.7, | |
label="Tempo", | |
) | |
line_data.plot( | |
x="Inferência", | |
y="Média", | |
ax=line_ax, | |
color="#DC2626", | |
linestyle="--", | |
label="Média", | |
) | |
line_ax.set_title( | |
"Tempo de Inferência por Execução", pad=15, fontsize=12, color="#1f2937" | |
) | |
line_ax.set_xlabel("Número da Inferência", color="#374151") | |
line_ax.set_ylabel("Tempo (ms)", color="#374151") | |
line_ax.tick_params(colors="#4b5563") | |
line_ax.grid(True, linestyle="--", alpha=0.3) | |
line_ax.legend(frameon=True, facecolor="#f0f0f5", edgecolor="none") | |
hist_fig.tight_layout() | |
line_fig.tight_layout() | |
return hist_fig, line_fig | |
def preprocess(self, img): | |
# Convert PIL Image to cv2 format | |
img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
# Get image dimensions | |
self.img_height, self.img_width = img_cv2.shape[:2] | |
# Convert back to RGB for processing | |
img_rgb = cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB) | |
# Resize | |
img_resized = cv2.resize(img_rgb, (self.input_width, self.input_height)) | |
# Normalize and transpose | |
image_data = np.array(img_resized) / 255.0 | |
image_data = np.transpose(image_data, (2, 0, 1)) | |
image_data = np.expand_dims(image_data, axis=0).astype(np.float32) | |
return image_data, img_cv2 | |
def draw_detections(self, img, box, score, class_id): | |
x1, y1, w, h = box | |
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3)) | |
color = self.color_palette[class_id] | |
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2) | |
label = f"{self.classes[class_id]}: {score:.2f}" | |
(label_width, label_height), _ = cv2.getTextSize( | |
label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1 | |
) | |
label_x = x1 | |
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 | |
cv2.rectangle( | |
img, | |
(int(label_x), int(label_y - label_height)), | |
(int(label_x + label_width), int(label_y + label_height)), | |
color, | |
cv2.FILLED, | |
) | |
cv2.putText( | |
img, | |
label, | |
(int(label_x), int(label_y)), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
0.5, | |
(0, 0, 0), | |
1, | |
cv2.LINE_AA, | |
) | |
def postprocess(self, input_image, output, conf_thres, iou_thres): | |
outputs = np.transpose(np.squeeze(output[0])) | |
rows = outputs.shape[0] | |
boxes = [] | |
scores = [] | |
class_ids = [] | |
x_factor = self.img_width / self.input_width | |
y_factor = self.img_height / self.input_height | |
for i in range(rows): | |
classes_scores = outputs[i][4:] | |
max_score = np.amax(classes_scores) | |
if max_score >= conf_thres: | |
class_id = np.argmax(classes_scores) | |
x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3] | |
left = int((x - w / 2) * x_factor) | |
top = int((y - h / 2) * y_factor) | |
width = int(w * x_factor) | |
height = int(h * y_factor) | |
class_ids.append(class_id) | |
scores.append(max_score) | |
boxes.append([left, top, width, height]) | |
indices = cv2.dnn.NMSBoxes(boxes, scores, conf_thres, iou_thres) | |
for i in indices: | |
box = boxes[i] | |
score = scores[i] | |
class_id = class_ids[i] | |
self.draw_detections(input_image, box, score, class_id) | |
return cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB) | |
def detect(self, image, conf_thres=0.25, iou_thres=0.5): | |
# Preprocess the image | |
img_data, original_image = self.preprocess(image) | |
# Run inference | |
start_time = time.time() | |
outputs = self.session.run(None, {self.session.get_inputs()[0].name: img_data}) | |
inference_time = (time.time() - start_time) * 1000 # Convert to milliseconds | |
# Postprocess the results | |
output_image = self.postprocess(original_image, outputs, conf_thres, iou_thres) | |
self.update_metrics(inference_time) | |
return output_image, self.get_metrics() | |
def detect_example(self, image, conf_thres=0.25, iou_thres=0.5): | |
"""Wrapper method for examples that returns only the image""" | |
output_image, _ = self.detect(image, conf_thres, iou_thres) | |
return output_image | |
def create_gradio_interface(): | |
# Download model if it doesn't exist | |
if not os.path.exists(MODEL_PATH): | |
download_model() | |
# Initialize the detector | |
detector = SignatureDetector(MODEL_PATH) | |
css = """ | |
.custom-button { | |
background-color: #b0ffb8 !important; | |
color: black !important; | |
} | |
.custom-button:hover { | |
background-color: #b0ffb8b3 !important; | |
} | |
.container { | |
max-width: 1200px !important; | |
margin: auto !important; | |
} | |
.main-container { | |
gap: 20px !important; | |
} | |
.metrics-container { | |
padding: 1.5rem !important; | |
border-radius: 0.75rem !important; | |
background-color: #1f2937 !important; | |
margin: 1rem 0 !important; | |
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1) !important; | |
} | |
.metrics-title { | |
font-size: 1.25rem !important; | |
font-weight: 600 !important; | |
color: #1f2937 !important; | |
margin-bottom: 1rem !important; | |
} | |
""" | |
def process_image(image, conf_thres, iou_thres): | |
if image is None: | |
return None, None, None, None | |
output_image, metrics = detector.detect(image, conf_thres, iou_thres) | |
# Create plots data | |
hist_data = pd.DataFrame({"Tempo (ms)": metrics["times"]}) | |
line_data = pd.DataFrame( | |
{ | |
"Inferência": range(len(metrics["times"])), | |
"Tempo (ms)": metrics["times"], | |
"Média": [metrics["avg_time"]] * len(metrics["times"]), | |
} | |
) | |
# Criar plots | |
hist_fig, line_fig = detector.create_plots(hist_data, line_data) | |
return ( | |
output_image, | |
gr.update( | |
value=f"Total de Inferências: {metrics['total_inferences']}", | |
container=True, | |
), | |
hist_fig, | |
line_fig, | |
) | |
with gr.Blocks( | |
theme=gr.themes.Soft( | |
primary_hue="indigo", secondary_hue="gray", neutral_hue="gray" | |
), | |
css=css, | |
) as iface: | |
gr.Markdown( | |
""" | |
# Tech4Humans - Detector de Assinaturas | |
Este sistema utiliza o modelo [**YOLOv8s**](https://huggingface.co/tech4humans/yolov8s-signature-detector), especialmente ajustado para a detecção de assinaturas manuscritas em imagens de documentos. | |
Com este detector, é possível identificar assinaturas em documentos digitais com elevada precisão em tempo real, sendo ideal para | |
aplicações que envolvem validação, organização e processamento de documentos. | |
--- | |
""" | |
) | |
with gr.Row(equal_height=True, elem_classes="main-container"): | |
# Coluna da esquerda para controles e informações | |
with gr.Column(scale=1): | |
input_image = gr.Image( | |
label="Faça o upload do seu documento", type="pil" | |
) | |
with gr.Row(): | |
clear_btn = gr.ClearButton([input_image], value="Limpar") | |
submit_btn = gr.Button("Detectar", elem_classes="custom-button") | |
with gr.Group(): | |
confidence_threshold = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.25, | |
step=0.05, | |
label="Limiar de Confiança", | |
info="Ajuste a pontuação mínima de confiança necessária para detecção.", | |
) | |
iou_threshold = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.5, | |
step=0.05, | |
label="Limiar de IoU", | |
info="Ajuste o limiar de Interseção sobre União para Non Maximum Suppression (NMS).", | |
) | |
with gr.Column(scale=1): | |
output_image = gr.Image(label="Resultados da Detecção") | |
with gr.Accordion("Exemplos", open=True): | |
gr.Examples( | |
examples=[ | |
["assets/images/example_{i}.jpg".format(i=i)] | |
for i in range( | |
0, len(os.listdir(os.path.join("assets", "images"))) | |
) | |
], | |
inputs=input_image, | |
outputs=output_image, | |
fn=detector.detect_example, | |
cache_examples=True, | |
cache_mode="lazy", | |
) | |
with gr.Row(elem_classes="metrics-container"): | |
with gr.Column(scale=1): | |
total_inferences = gr.Textbox( | |
label="Total de Inferências", show_copy_button=True, container=True | |
) | |
hist_plot = gr.Plot(label="Distribuição dos Tempos", container=True) | |
with gr.Column(scale=1): | |
line_plot = gr.Plot(label="Histórico de Tempos", container=True) | |
with gr.Row(elem_classes="container"): | |
gr.Markdown( | |
""" | |
--- | |
## Sobre o Projeto | |
Este projeto utiliza o modelo YOLOv8s ajustado para detecção de assinaturas manuscritas em imagens de documentos. Ele foi treinado com dados provenientes dos conjuntos [Tobacco800](https://paperswithcode.com/dataset/tobacco-800) e [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up), passando por processos de pré-processamento e aumentação de dados. | |
### Principais Métricas: | |
- **Precisão (Precision):** 94,74% | |
- **Revocação (Recall):** 89,72% | |
- **mAP@50:** 94,50% | |
- **mAP@50-95:** 67,35% | |
- **Tempo de Inferência (CPU):** 171,56 ms | |
O processo completo de treinamento, ajuste de hiperparâmetros, e avaliação do modelo pode ser consultado em detalhes no repositório abaixo. | |
[Leia o README completo no Hugging Face Models](https://huggingface.co/tech4humans/yolov8s-signature-detector) | |
--- | |
**Desenvolvido por [Tech4Humans](https://www.tech4h.com.br/)** | **Modelo:** [YOLOv8s](https://huggingface.co/tech4humans/yolov8s-signature-detector) | **Datasets:** [Tobacco800](https://paperswithcode.com/dataset/tobacco-800), [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up) | |
""" | |
) | |
clear_btn.add([output_image]) | |
submit_btn.click( | |
fn=process_image, | |
inputs=[input_image, confidence_threshold, iou_threshold], | |
outputs=[output_image, total_inferences, hist_plot, line_plot], | |
) | |
# Carregar métricas iniciais ao carregar a página | |
iface.load( | |
fn=detector.load_initial_metrics, | |
inputs=None, | |
outputs=[output_image, total_inferences, hist_plot, line_plot], | |
) | |
return iface | |
if __name__ == "__main__": | |
iface = create_gradio_interface() | |
iface.launch() | |