samuellimabraz's picture
feat: adicionar armazenamento de métricas de inferência em banco de dados SQLite e criar gráficos de desempenho
4014f2e
raw
history blame
18.5 kB
import cv2
import numpy as np
import pandas as pd
import time
import matplotlib.pyplot as plt
import onnxruntime as ort
from collections import deque
import gradio as gr
import os
import sqlite3
from datetime import datetime
from huggingface_hub import hf_hub_download
# Model info
REPO_ID = "tech4humans/yolov8s-signature-detector"
FILENAME = "tune/trial_10/weights/best.onnx"
MODEL_DIR = "model"
MODEL_PATH = os.path.join(MODEL_DIR, "model.onnx")
def download_model():
"""Download the model using Hugging Face Hub"""
# Ensure model directory exists
os.makedirs(MODEL_DIR, exist_ok=True)
try:
print(f"Downloading model from {REPO_ID}...")
# Download the model file from Hugging Face Hub
model_path = hf_hub_download(
repo_id=REPO_ID,
filename=FILENAME,
local_dir=MODEL_DIR,
local_dir_use_symlinks=False,
force_download=True,
cache_dir=None,
)
# Move the file to the correct location if it's not there already
if os.path.exists(model_path) and model_path != MODEL_PATH:
os.rename(model_path, MODEL_PATH)
# Remove empty directories if they exist
empty_dir = os.path.join(MODEL_DIR, "tune")
if os.path.exists(empty_dir):
import shutil
shutil.rmtree(empty_dir)
print("Model downloaded successfully!")
return MODEL_PATH
except Exception as e:
print(f"Error downloading model: {e}")
raise e
class MetricsStorage:
def __init__(self, db_path="metrics.db"):
self.db_path = db_path
self.setup_database()
def setup_database(self):
"""Initialize the SQLite database and create tables if they don't exist"""
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"""
CREATE TABLE IF NOT EXISTS inference_metrics (
id INTEGER PRIMARY KEY AUTOINCREMENT,
inference_time REAL,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
"""
)
conn.commit()
def add_metric(self, inference_time):
"""Add a new inference time measurement to the database"""
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"INSERT INTO inference_metrics (inference_time) VALUES (?)",
(inference_time,),
)
conn.commit()
def get_recent_metrics(self, limit=50):
"""Get the most recent metrics from the database"""
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"SELECT inference_time FROM inference_metrics ORDER BY timestamp DESC LIMIT ?",
(limit,),
)
results = cursor.fetchall()
return [r[0] for r in results]
def get_total_inferences(self):
"""Get the total number of inferences recorded"""
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("SELECT COUNT(*) FROM inference_metrics")
return cursor.fetchone()[0]
def get_average_time(self, limit=50):
"""Get the average inference time from the most recent entries"""
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"SELECT AVG(inference_time) FROM (SELECT inference_time FROM inference_metrics ORDER BY timestamp DESC LIMIT ?)",
(limit,),
)
result = cursor.fetchone()[0]
return result if result is not None else 0
class SignatureDetector:
def __init__(self, model_path):
self.model_path = model_path
self.classes = ["signature"]
self.input_width = 640
self.input_height = 640
# Initialize ONNX Runtime session
self.session = ort.InferenceSession(
MODEL_PATH, providers=["CPUExecutionProvider"]
)
self.metrics_storage = MetricsStorage()
def update_metrics(self, inference_time):
"""Update metrics in persistent storage"""
self.metrics_storage.add_metric(inference_time)
def get_metrics(self):
"""Get current metrics from storage"""
return {
"times": self.metrics_storage.get_recent_metrics(),
"total_inferences": self.metrics_storage.get_total_inferences(),
"avg_time": self.metrics_storage.get_average_time(),
}
def load_initial_metrics(self):
"""Load initial metrics for display"""
metrics = self.get_metrics()
if not metrics["times"]: # Se não houver dados
return None, None, None, None
# Criar plots data
hist_data = pd.DataFrame({"Tempo (ms)": metrics["times"]})
line_data = pd.DataFrame(
{
"Inferência": range(len(metrics["times"])),
"Tempo (ms)": metrics["times"],
"Média": [metrics["avg_time"]] * len(metrics["times"]),
}
)
# Criar plots
hist_fig, line_fig = self.create_plots(hist_data, line_data)
return (
None, # output_image
f"Total de Inferências: {metrics['total_inferences']}",
hist_fig,
line_fig,
)
def create_plots(self, hist_data, line_data):
"""Helper method to create plots"""
plt.style.use("dark_background")
# Histograma
hist_fig, hist_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5")
hist_ax.set_facecolor("#f0f0f5")
hist_data.hist(
bins=20, ax=hist_ax, color="#4F46E5", alpha=0.7, edgecolor="white"
)
hist_ax.set_title(
"Distribuição dos Tempos de Inferência",
pad=15,
fontsize=12,
color="#1f2937",
)
hist_ax.set_xlabel("Tempo (ms)", color="#374151")
hist_ax.set_ylabel("Frequência", color="#374151")
hist_ax.tick_params(colors="#4b5563")
hist_ax.grid(True, linestyle="--", alpha=0.3)
# Gráfico de linha
line_fig, line_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5")
line_ax.set_facecolor("#f0f0f5")
line_data.plot(
x="Inferência",
y="Tempo (ms)",
ax=line_ax,
color="#4F46E5",
alpha=0.7,
label="Tempo",
)
line_data.plot(
x="Inferência",
y="Média",
ax=line_ax,
color="#DC2626",
linestyle="--",
label="Média",
)
line_ax.set_title(
"Tempo de Inferência por Execução", pad=15, fontsize=12, color="#1f2937"
)
line_ax.set_xlabel("Número da Inferência", color="#374151")
line_ax.set_ylabel("Tempo (ms)", color="#374151")
line_ax.tick_params(colors="#4b5563")
line_ax.grid(True, linestyle="--", alpha=0.3)
line_ax.legend(frameon=True, facecolor="#f0f0f5", edgecolor="none")
hist_fig.tight_layout()
line_fig.tight_layout()
return hist_fig, line_fig
def preprocess(self, img):
# Convert PIL Image to cv2 format
img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
# Get image dimensions
self.img_height, self.img_width = img_cv2.shape[:2]
# Convert back to RGB for processing
img_rgb = cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB)
# Resize
img_resized = cv2.resize(img_rgb, (self.input_width, self.input_height))
# Normalize and transpose
image_data = np.array(img_resized) / 255.0
image_data = np.transpose(image_data, (2, 0, 1))
image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
return image_data, img_cv2
def draw_detections(self, img, box, score, class_id):
x1, y1, w, h = box
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
color = self.color_palette[class_id]
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
label = f"{self.classes[class_id]}: {score:.2f}"
(label_width, label_height), _ = cv2.getTextSize(
label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1
)
label_x = x1
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
cv2.rectangle(
img,
(int(label_x), int(label_y - label_height)),
(int(label_x + label_width), int(label_y + label_height)),
color,
cv2.FILLED,
)
cv2.putText(
img,
label,
(int(label_x), int(label_y)),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 0, 0),
1,
cv2.LINE_AA,
)
def postprocess(self, input_image, output, conf_thres, iou_thres):
outputs = np.transpose(np.squeeze(output[0]))
rows = outputs.shape[0]
boxes = []
scores = []
class_ids = []
x_factor = self.img_width / self.input_width
y_factor = self.img_height / self.input_height
for i in range(rows):
classes_scores = outputs[i][4:]
max_score = np.amax(classes_scores)
if max_score >= conf_thres:
class_id = np.argmax(classes_scores)
x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]
left = int((x - w / 2) * x_factor)
top = int((y - h / 2) * y_factor)
width = int(w * x_factor)
height = int(h * y_factor)
class_ids.append(class_id)
scores.append(max_score)
boxes.append([left, top, width, height])
indices = cv2.dnn.NMSBoxes(boxes, scores, conf_thres, iou_thres)
for i in indices:
box = boxes[i]
score = scores[i]
class_id = class_ids[i]
self.draw_detections(input_image, box, score, class_id)
return cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
def detect(self, image, conf_thres=0.25, iou_thres=0.5):
# Preprocess the image
img_data, original_image = self.preprocess(image)
# Run inference
start_time = time.time()
outputs = self.session.run(None, {self.session.get_inputs()[0].name: img_data})
inference_time = (time.time() - start_time) * 1000 # Convert to milliseconds
# Postprocess the results
output_image = self.postprocess(original_image, outputs, conf_thres, iou_thres)
self.update_metrics(inference_time)
return output_image, self.get_metrics()
def detect_example(self, image, conf_thres=0.25, iou_thres=0.5):
"""Wrapper method for examples that returns only the image"""
output_image, _ = self.detect(image, conf_thres, iou_thres)
return output_image
def create_gradio_interface():
# Download model if it doesn't exist
if not os.path.exists(MODEL_PATH):
download_model()
# Initialize the detector
detector = SignatureDetector(MODEL_PATH)
css = """
.custom-button {
background-color: #b0ffb8 !important;
color: black !important;
}
.custom-button:hover {
background-color: #b0ffb8b3 !important;
}
.container {
max-width: 1200px !important;
margin: auto !important;
}
.main-container {
gap: 20px !important;
}
.metrics-container {
padding: 1.5rem !important;
border-radius: 0.75rem !important;
background-color: #1f2937 !important;
margin: 1rem 0 !important;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1) !important;
}
.metrics-title {
font-size: 1.25rem !important;
font-weight: 600 !important;
color: #1f2937 !important;
margin-bottom: 1rem !important;
}
"""
def process_image(image, conf_thres, iou_thres):
if image is None:
return None, None, None, None
output_image, metrics = detector.detect(image, conf_thres, iou_thres)
# Create plots data
hist_data = pd.DataFrame({"Tempo (ms)": metrics["times"]})
line_data = pd.DataFrame(
{
"Inferência": range(len(metrics["times"])),
"Tempo (ms)": metrics["times"],
"Média": [metrics["avg_time"]] * len(metrics["times"]),
}
)
# Criar plots
hist_fig, line_fig = detector.create_plots(hist_data, line_data)
return (
output_image,
gr.update(
value=f"Total de Inferências: {metrics['total_inferences']}",
container=True,
),
hist_fig,
line_fig,
)
with gr.Blocks(
theme=gr.themes.Soft(
primary_hue="indigo", secondary_hue="gray", neutral_hue="gray"
),
css=css,
) as iface:
gr.Markdown(
"""
# Tech4Humans - Detector de Assinaturas
Este sistema utiliza o modelo [**YOLOv8s**](https://huggingface.co/tech4humans/yolov8s-signature-detector), especialmente ajustado para a detecção de assinaturas manuscritas em imagens de documentos.
Com este detector, é possível identificar assinaturas em documentos digitais com elevada precisão em tempo real, sendo ideal para
aplicações que envolvem validação, organização e processamento de documentos.
---
"""
)
with gr.Row(equal_height=True, elem_classes="main-container"):
# Coluna da esquerda para controles e informações
with gr.Column(scale=1):
input_image = gr.Image(
label="Faça o upload do seu documento", type="pil"
)
with gr.Row():
clear_btn = gr.ClearButton([input_image], value="Limpar")
submit_btn = gr.Button("Detectar", elem_classes="custom-button")
with gr.Group():
confidence_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.25,
step=0.05,
label="Limiar de Confiança",
info="Ajuste a pontuação mínima de confiança necessária para detecção.",
)
iou_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.05,
label="Limiar de IoU",
info="Ajuste o limiar de Interseção sobre União para Non Maximum Suppression (NMS).",
)
with gr.Column(scale=1):
output_image = gr.Image(label="Resultados da Detecção")
with gr.Accordion("Exemplos", open=True):
gr.Examples(
examples=[
["assets/images/example_{i}.jpg".format(i=i)]
for i in range(
0, len(os.listdir(os.path.join("assets", "images")))
)
],
inputs=input_image,
outputs=output_image,
fn=detector.detect_example,
cache_examples=True,
cache_mode="lazy",
)
with gr.Row(elem_classes="metrics-container"):
with gr.Column(scale=1):
total_inferences = gr.Textbox(
label="Total de Inferências", show_copy_button=True, container=True
)
hist_plot = gr.Plot(label="Distribuição dos Tempos", container=True)
with gr.Column(scale=1):
line_plot = gr.Plot(label="Histórico de Tempos", container=True)
with gr.Row(elem_classes="container"):
gr.Markdown(
"""
---
## Sobre o Projeto
Este projeto utiliza o modelo YOLOv8s ajustado para detecção de assinaturas manuscritas em imagens de documentos. Ele foi treinado com dados provenientes dos conjuntos [Tobacco800](https://paperswithcode.com/dataset/tobacco-800) e [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up), passando por processos de pré-processamento e aumentação de dados.
### Principais Métricas:
- **Precisão (Precision):** 94,74%
- **Revocação (Recall):** 89,72%
- **mAP@50:** 94,50%
- **mAP@50-95:** 67,35%
- **Tempo de Inferência (CPU):** 171,56 ms
O processo completo de treinamento, ajuste de hiperparâmetros, e avaliação do modelo pode ser consultado em detalhes no repositório abaixo.
[Leia o README completo no Hugging Face Models](https://huggingface.co/tech4humans/yolov8s-signature-detector)
---
**Desenvolvido por [Tech4Humans](https://www.tech4h.com.br/)** | **Modelo:** [YOLOv8s](https://huggingface.co/tech4humans/yolov8s-signature-detector) | **Datasets:** [Tobacco800](https://paperswithcode.com/dataset/tobacco-800), [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up)
"""
)
clear_btn.add([output_image])
submit_btn.click(
fn=process_image,
inputs=[input_image, confidence_threshold, iou_threshold],
outputs=[output_image, total_inferences, hist_plot, line_plot],
)
# Carregar métricas iniciais ao carregar a página
iface.load(
fn=detector.load_initial_metrics,
inputs=None,
outputs=[output_image, total_inferences, hist_plot, line_plot],
)
return iface
if __name__ == "__main__":
iface = create_gradio_interface()
iface.launch()