File size: 6,664 Bytes
e17c6a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import cv2
import numpy as np
import onnxruntime as ort
import gradio as gr
import os
from huggingface_hub import hf_hub_download

# Model info
REPO_ID = "tech4humans/yolov8s-signature-detector"
FILENAME = "tune/trial_10/weights/best.onnx"
MODEL_DIR = "model"
MODEL_PATH = os.path.join(MODEL_DIR, "model.onnx")

def download_model():
    """Download the model using Hugging Face Hub"""
    # Ensure model directory exists
    os.makedirs(MODEL_DIR, exist_ok=True)
    
    try:
        print(f"Downloading model from {REPO_ID}...")
        # Download the model file from Hugging Face Hub
        model_path = hf_hub_download(
            repo_id=REPO_ID,
            filename=FILENAME,
            local_dir=MODEL_DIR,
            local_dir_use_symlinks=False,
            force_download=True,
            cache_dir=None
        )
        
        # Move the file to the correct location if it's not there already
        if os.path.exists(model_path) and model_path != MODEL_PATH:
            os.rename(model_path, MODEL_PATH)
            
            # Remove empty directories if they exist
            empty_dir = os.path.join(MODEL_DIR, "tune")
            if os.path.exists(empty_dir):
                import shutil
                shutil.rmtree(empty_dir)
            
        print("Model downloaded successfully!")
        return MODEL_PATH
        
    except Exception as e:
        print(f"Error downloading model: {str(e)}")
        raise e
    
class SignatureDetector:
    def __init__(self, model_path):
        self.model_path = model_path
        self.classes = ["signature"]
        self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
        self.input_width = 640
        self.input_height = 640
        
        # Initialize ONNX Runtime session
        self.session = ort.InferenceSession(MODEL_PATH, providers=["CPUExecutionProvider"])
        
    def preprocess(self, img):
        # Convert PIL Image to cv2 format
        img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
        
        # Get image dimensions
        self.img_height, self.img_width = img_cv2.shape[:2]
        
        # Convert back to RGB for processing
        img_rgb = cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB)
        
        # Resize
        img_resized = cv2.resize(img_rgb, (self.input_width, self.input_height))
        
        # Normalize and transpose
        image_data = np.array(img_resized) / 255.0
        image_data = np.transpose(image_data, (2, 0, 1))
        image_data = np.expand_dims(image_data, axis=0).astype(np.float32)
        
        return image_data, img_cv2
    
    def draw_detections(self, img, box, score, class_id):
        x1, y1, w, h = box
        color = self.color_palette[class_id]
        
        cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
        
        label = f"{self.classes[class_id]}: {score:.2f}"
        (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
        
        label_x = x1
        label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
        
        cv2.rectangle(
            img,
            (int(label_x), int(label_y - label_height)),
            (int(label_x + label_width), int(label_y + label_height)),
            color,
            cv2.FILLED
        )
        
        cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
    
    def postprocess(self, input_image, output, conf_thres, iou_thres):
        outputs = np.transpose(np.squeeze(output[0]))
        rows = outputs.shape[0]
        
        boxes = []
        scores = []
        class_ids = []
        
        x_factor = self.img_width / self.input_width
        y_factor = self.img_height / self.input_height
        
        for i in range(rows):
            classes_scores = outputs[i][4:]
            max_score = np.amax(classes_scores)
            
            if max_score >= conf_thres:
                class_id = np.argmax(classes_scores)
                x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]
                
                left = int((x - w / 2) * x_factor)
                top = int((y - h / 2) * y_factor)
                width = int(w * x_factor)
                height = int(h * y_factor)
                
                class_ids.append(class_id)
                scores.append(max_score)
                boxes.append([left, top, width, height])
        
        indices = cv2.dnn.NMSBoxes(boxes, scores, conf_thres, iou_thres)
        
        for i in indices:
            box = boxes[i]
            score = scores[i]
            class_id = class_ids[i]
            self.draw_detections(input_image, box, score, class_id)
        
        return cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
    
    def detect(self, image, conf_thres, iou_thres):
        # Preprocess the image
        img_data, original_image = self.preprocess(image)
        
        # Run inference
        outputs = self.session.run(None, {self.session.get_inputs()[0].name: img_data})
        
        # Postprocess the results
        output_image = self.postprocess(original_image, outputs, conf_thres, iou_thres)
        
        return output_image

def create_gradio_interface():
    # Download model if it doesn't exist
    if not os.path.exists(MODEL_PATH):
        download_model()
    
    # Initialize the detector
    detector = SignatureDetector(MODEL_PATH)
    
    # Create Gradio interface
    iface = gr.Interface(
        fn=detector.detect,
        inputs=[
            gr.Image(label="Upload your Document", type="pil"),
            gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.05, 
                     label="Confidence Threshold", 
                     info="Adjust the minimum confidence score required for detection"),
            gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.05, 
                     label="IoU Threshold",
                     info="Adjust the Intersection over Union threshold for NMS")
        ],
        outputs=gr.Image(label="Detection Results"),
        title="Signature Detector",
        description="Upload an image to detect signatures using YOLOv8. Use the sliders to adjust detection sensitivity.",
        examples=[
            ["assets/images/example_1.jpg", 0.2, 0.5],
            ["assets/images/example_2.jpg", 0.2, 0.5],
            ["assets/images/example_3.jpg", 0.2, 0.5],
            ["assets/images/example_4.jpg", 0.2, 0.5]
        ]
    )
    
    return iface

if __name__ == "__main__":
    iface = create_gradio_interface()
    iface.launch()