File size: 15,277 Bytes
e17c6a5
 
b6c3e5f
 
 
e17c6a5
b6c3e5f
e17c6a5
 
 
 
 
 
 
 
 
 
b6c3e5f
e17c6a5
 
 
 
b6c3e5f
e17c6a5
 
 
 
 
 
 
 
 
b6c3e5f
e17c6a5
b6c3e5f
e17c6a5
 
 
b6c3e5f
e17c6a5
 
 
 
b6c3e5f
e17c6a5
b6c3e5f
e17c6a5
 
b6c3e5f
e17c6a5
b6c3e5f
e17c6a5
b6c3e5f
 
e17c6a5
 
 
 
 
 
b6c3e5f
e17c6a5
b6c3e5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17c6a5
 
 
b6c3e5f
e17c6a5
 
b6c3e5f
e17c6a5
 
b6c3e5f
e17c6a5
 
b6c3e5f
e17c6a5
 
 
 
b6c3e5f
e17c6a5
b6c3e5f
e17c6a5
 
371a8c3
e17c6a5
b6c3e5f
e17c6a5
b6c3e5f
e17c6a5
b6c3e5f
 
 
 
e17c6a5
 
b6c3e5f
e17c6a5
 
 
 
 
b6c3e5f
e17c6a5
b6c3e5f
 
 
 
 
 
 
 
 
 
 
 
e17c6a5
 
 
b6c3e5f
e17c6a5
 
 
b6c3e5f
e17c6a5
 
b6c3e5f
e17c6a5
 
 
b6c3e5f
e17c6a5
 
 
b6c3e5f
e17c6a5
 
 
 
b6c3e5f
e17c6a5
 
 
b6c3e5f
e17c6a5
b6c3e5f
e17c6a5
 
 
 
 
b6c3e5f
e17c6a5
b6c3e5f
4c0300b
e17c6a5
 
b6c3e5f
e17c6a5
b6c3e5f
e17c6a5
b6c3e5f
 
e17c6a5
 
b6c3e5f
 
 
 
 
 
 
 
e17c6a5
 
b6c3e5f
e17c6a5
 
 
 
b6c3e5f
e17c6a5
 
b6c3e5f
371a8c3
 
 
 
 
 
 
 
b6c3e5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371a8c3
 
b6c3e5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371a8c3
b6c3e5f
 
371a8c3
b6c3e5f
371a8c3
 
 
4c0300b
951da42
 
b6c3e5f
951da42
 
 
 
 
371a8c3
 
b6c3e5f
 
 
 
 
 
 
 
371a8c3
 
b6c3e5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371a8c3
b6c3e5f
371a8c3
b6c3e5f
 
371a8c3
b6c3e5f
951da42
b6c3e5f
 
 
 
951da42
b6c3e5f
951da42
b6c3e5f
 
 
 
 
 
951da42
b6c3e5f
951da42
b6c3e5f
951da42
b6c3e5f
 
 
 
 
 
 
 
 
 
 
 
371a8c3
b6c3e5f
e17c6a5
 
b6c3e5f
e17c6a5
 
b6c3e5f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import cv2
import numpy as np
import pandas as pd
import time
import matplotlib.pyplot as plt
import onnxruntime as ort
from collections import deque
import gradio as gr
import os
from huggingface_hub import hf_hub_download

# Model info
REPO_ID = "tech4humans/yolov8s-signature-detector"
FILENAME = "tune/trial_10/weights/best.onnx"
MODEL_DIR = "model"
MODEL_PATH = os.path.join(MODEL_DIR, "model.onnx")


def download_model():
    """Download the model using Hugging Face Hub"""
    # Ensure model directory exists
    os.makedirs(MODEL_DIR, exist_ok=True)

    try:
        print(f"Downloading model from {REPO_ID}...")
        # Download the model file from Hugging Face Hub
        model_path = hf_hub_download(
            repo_id=REPO_ID,
            filename=FILENAME,
            local_dir=MODEL_DIR,
            local_dir_use_symlinks=False,
            force_download=True,
            cache_dir=None,
        )

        # Move the file to the correct location if it's not there already
        if os.path.exists(model_path) and model_path != MODEL_PATH:
            os.rename(model_path, MODEL_PATH)

            # Remove empty directories if they exist
            empty_dir = os.path.join(MODEL_DIR, "tune")
            if os.path.exists(empty_dir):
                import shutil

                shutil.rmtree(empty_dir)

        print("Model downloaded successfully!")
        return MODEL_PATH

    except Exception as e:
        print(f"Error downloading model: {e}")
        raise e


class SignatureDetector:
    def __init__(self, model_path):
        self.model_path = model_path
        self.classes = ["signature"]
        self.input_width = 640
        self.input_height = 640

        # Initialize ONNX Runtime session
        self.session = ort.InferenceSession(
            MODEL_PATH, providers=["CPUExecutionProvider"]
        )

        # Initialize metrics tracking
        self.inference_times = deque(maxlen=50)  # Store last 50 inference times
        self.total_inferences = 0
        self.avg_inference_time = 0

    def update_metrics(self, inference_time):
        self.inference_times.append(inference_time)
        self.total_inferences += 1
        self.avg_inference_time = sum(self.inference_times) / len(self.inference_times)

    def get_metrics(self):
        return {
            "times": list(self.inference_times),
            "total_inferences": self.total_inferences,
            "avg_time": self.avg_inference_time,
        }

    def preprocess(self, img):
        # Convert PIL Image to cv2 format
        img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)

        # Get image dimensions
        self.img_height, self.img_width = img_cv2.shape[:2]

        # Convert back to RGB for processing
        img_rgb = cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB)

        # Resize
        img_resized = cv2.resize(img_rgb, (self.input_width, self.input_height))

        # Normalize and transpose
        image_data = np.array(img_resized) / 255.0
        image_data = np.transpose(image_data, (2, 0, 1))
        image_data = np.expand_dims(image_data, axis=0).astype(np.float32)

        return image_data, img_cv2

    def draw_detections(self, img, box, score, class_id):
        x1, y1, w, h = box
        self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
        color = self.color_palette[class_id]

        cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)

        label = f"{self.classes[class_id]}: {score:.2f}"
        (label_width, label_height), _ = cv2.getTextSize(
            label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1
        )

        label_x = x1
        label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10

        cv2.rectangle(
            img,
            (int(label_x), int(label_y - label_height)),
            (int(label_x + label_width), int(label_y + label_height)),
            color,
            cv2.FILLED,
        )

        cv2.putText(
            img,
            label,
            (int(label_x), int(label_y)),
            cv2.FONT_HERSHEY_SIMPLEX,
            0.5,
            (0, 0, 0),
            1,
            cv2.LINE_AA,
        )

    def postprocess(self, input_image, output, conf_thres, iou_thres):
        outputs = np.transpose(np.squeeze(output[0]))
        rows = outputs.shape[0]

        boxes = []
        scores = []
        class_ids = []

        x_factor = self.img_width / self.input_width
        y_factor = self.img_height / self.input_height

        for i in range(rows):
            classes_scores = outputs[i][4:]
            max_score = np.amax(classes_scores)

            if max_score >= conf_thres:
                class_id = np.argmax(classes_scores)
                x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]

                left = int((x - w / 2) * x_factor)
                top = int((y - h / 2) * y_factor)
                width = int(w * x_factor)
                height = int(h * y_factor)

                class_ids.append(class_id)
                scores.append(max_score)
                boxes.append([left, top, width, height])

        indices = cv2.dnn.NMSBoxes(boxes, scores, conf_thres, iou_thres)

        for i in indices:
            box = boxes[i]
            score = scores[i]
            class_id = class_ids[i]
            self.draw_detections(input_image, box, score, class_id)

        return cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)

    def detect(self, image, conf_thres=0.25, iou_thres=0.5):
        # Preprocess the image
        img_data, original_image = self.preprocess(image)

        # Run inference
        start_time = time.time()
        outputs = self.session.run(None, {self.session.get_inputs()[0].name: img_data})
        inference_time = (time.time() - start_time) * 1000  # Convert to milliseconds

        # Postprocess the results
        output_image = self.postprocess(original_image, outputs, conf_thres, iou_thres)

        self.update_metrics(inference_time)

        return output_image, self.get_metrics()

    def detect_example(self, image, conf_thres=0.25, iou_thres=0.5):
        """Wrapper method for examples that returns only the image"""
        output_image, _ = self.detect(image, conf_thres, iou_thres)
        return output_image


def create_gradio_interface():
    # Download model if it doesn't exist
    if not os.path.exists(MODEL_PATH):
        download_model()

    # Initialize the detector
    detector = SignatureDetector(MODEL_PATH)

    css = """
    .custom-button {
        background-color: #b0ffb8 !important;
        color: black !important;
    }
    .custom-button:hover {
        background-color: #b0ffb8b3 !important;
    }
    .container {
        max-width: 1200px !important;
        margin: auto !important;
    }
    .main-container {
        gap: 20px !important;
    }
    .metrics-container {
        padding: 1.5rem !important;
        border-radius: 0.75rem !important;
        background-color: #1f2937 !important;
        margin: 1rem 0 !important;
        box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1) !important;
    }
    .metrics-title {
        font-size: 1.25rem !important;
        font-weight: 600 !important;
        color: #1f2937 !important;
        margin-bottom: 1rem !important;
    }
    """

    def process_image(image, conf_thres, iou_thres):
        if image is None:
            return None, None, None, None

        output_image, metrics = detector.detect(image, conf_thres, iou_thres)

        # Create plots data
        hist_data = pd.DataFrame({"Tempo (ms)": metrics["times"]})
        line_data = pd.DataFrame(
            {
                "Inferência": range(len(metrics["times"])),
                "Tempo (ms)": metrics["times"],
                "Média": [metrics["avg_time"]] * len(metrics["times"]),
            }
        )

        # Limpar figuras existentes
        plt.close("all")

        # Configuração do estilo dos plots
        plt.style.use("dark_background")

        # Criar figura do histograma
        hist_fig, hist_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5")
        hist_ax.set_facecolor("#f0f0f5")
        hist_data.hist(
            bins=20, ax=hist_ax, color="#4F46E5", alpha=0.7, edgecolor="white"
        )
        hist_ax.set_title(
            "Distribuição dos Tempos de Inferência",
            pad=15,
            fontsize=12,
            color="#1f2937",
        )
        hist_ax.set_xlabel("Tempo (ms)", color="#374151")
        hist_ax.set_ylabel("Frequência", color="#374151")
        hist_ax.tick_params(colors="#4b5563")
        hist_ax.grid(True, linestyle="--", alpha=0.3)

        # Criar figura do gráfico de linha
        line_fig, line_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5")
        line_ax.set_facecolor("#f0f0f5")
        line_data.plot(
            x="Inferência",
            y="Tempo (ms)",
            ax=line_ax,
            color="#4F46E5",
            alpha=0.7,
            label="Tempo",
        )
        line_data.plot(
            x="Inferência",
            y="Média",
            ax=line_ax,
            color="#DC2626",
            linestyle="--",
            label="Média",
        )
        line_ax.set_title(
            "Tempo de Inferência por Execução", pad=15, fontsize=12, color="#1f2937"
        )
        line_ax.set_xlabel("Número da Inferência", color="#374151")
        line_ax.set_ylabel("Tempo (ms)", color="#374151")
        line_ax.tick_params(colors="#4b5563")
        line_ax.grid(True, linestyle="--", alpha=0.3)
        line_ax.legend(frameon=True, facecolor="#f0f0f5", edgecolor="none")

        # Ajustar layout
        hist_fig.tight_layout()
        line_fig.tight_layout()

        # Fechar as figuras para liberar memória
        plt.close(hist_fig)
        plt.close(line_fig)

        return (
            output_image,
            gr.update(
                value=f"Total de Inferências: {metrics['total_inferences']}",
                container=True,
            ),
            hist_fig,
            line_fig,
        )

    with gr.Blocks(
        theme=gr.themes.Soft(
            primary_hue="indigo", secondary_hue="gray", neutral_hue="gray"
        ),
        css=css,
    ) as iface:
        gr.Markdown(
            """
            # Tech4Humans - Detector de Assinaturas
            
            Este sistema utiliza o modelo [**YOLOv8s**](https://huggingface.co/tech4humans/yolov8s-signature-detector), especialmente ajustado para a detecção de assinaturas manuscritas em imagens de documentos. 
           
            Com este detector, é possível identificar assinaturas em documentos digitais com elevada precisão em tempo real, sendo ideal para
            aplicações que envolvem validação, organização e processamento de documentos.
            
            ---
            """
        )

        with gr.Row(equal_height=True, elem_classes="main-container"):
            # Coluna da esquerda para controles e informações
            with gr.Column(scale=1):
                input_image = gr.Image(
                    label="Faça o upload do seu documento", type="pil"
                )

                with gr.Row():
                    clear_btn = gr.ClearButton([input_image], value="Limpar")
                    submit_btn = gr.Button("Detectar", elem_classes="custom-button")

                with gr.Group():
                    confidence_threshold = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.25,
                        step=0.05,
                        label="Limiar de Confiança",
                        info="Ajuste a pontuação mínima de confiança necessária para detecção.",
                    )
                    iou_threshold = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.5,
                        step=0.05,
                        label="Limiar de IoU",
                        info="Ajuste o limiar de Interseção sobre União para Non Maximum Suppression (NMS).",
                    )

            with gr.Column(scale=1):
                output_image = gr.Image(label="Resultados da Detecção")

                with gr.Accordion("Exemplos", open=True):
                    gr.Examples(
                        examples=[
                            ["assets/images/example_{i}.jpg".format(i=i)]
                            for i in range(
                                0, len(os.listdir(os.path.join("assets", "images")))
                            )
                        ],
                        inputs=input_image,
                        outputs=output_image,
                        fn=detector.detect_example,
                        cache_examples=True,
                        cache_mode="lazy",
                    )

        with gr.Row(elem_classes="metrics-container"):
            with gr.Column(scale=1):
                total_inferences = gr.Textbox(
                    label="Total de Inferências", show_copy_button=True, container=True
                )
                hist_plot = gr.Plot(label="Distribuição dos Tempos", container=True)

            with gr.Column(scale=1):
                line_plot = gr.Plot(label="Histórico de Tempos", container=True)

        with gr.Row(elem_classes="container"):

            gr.Markdown(
                """
                ---
                ## Sobre o Projeto

                Este projeto utiliza o modelo YOLOv8s ajustado para detecção de assinaturas manuscritas em imagens de documentos. Ele foi treinado com dados provenientes dos conjuntos [Tobacco800](https://paperswithcode.com/dataset/tobacco-800) e [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up), passando por processos de pré-processamento e aumentação de dados.

                ### Principais Métricas:
                - **Precisão (Precision):** 94,74%
                - **Revocação (Recall):** 89,72%
                - **mAP@50:** 94,50%
                - **mAP@50-95:** 67,35%
                - **Tempo de Inferência (CPU):** 171,56 ms

                O processo completo de treinamento, ajuste de hiperparâmetros, e avaliação do modelo pode ser consultado em detalhes no repositório abaixo.

                [Leia o README completo no Hugging Face Models](https://huggingface.co/tech4humans/yolov8s-signature-detector)

                ---

                **Desenvolvido por [Tech4Humans](https://www.tech4h.com.br/)** | **Modelo:** [YOLOv8s](https://huggingface.co/tech4humans/yolov8s-signature-detector) | **Datasets:** [Tobacco800](https://paperswithcode.com/dataset/tobacco-800), [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up)
                """
            )

        clear_btn.add([output_image, total_inferences, hist_plot, line_plot])

        submit_btn.click(
            fn=process_image,
            inputs=[input_image, confidence_threshold, iou_threshold],
            outputs=[output_image, total_inferences, hist_plot, line_plot],
        )

    return iface


if __name__ == "__main__":
    iface = create_gradio_interface()
    iface.launch()