from fastai.vision.all import * import gradio as gr import pathlib, os # def greet(name): # return "Hello " + name + "!!!!" def is_cat(x): return x[0].isupper() categories = ['Dog', 'Cat'] def classify_image(img): if os.name == 'nt': # workaround for Windows pathlib.PosixPath = pathlib.WindowsPath learn = load_learner('model_cat-or-dog.pkl') pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = gr.inputs.Image(shape=(192,192)) label = gr.outputs.Label() examples = ['img_20180720_163054.jpg', 'img_20210614_141029.jpg', 'img_20210614_140945.jpg', 'img_20210613_193627.jpg', 'img_20210613_184022.jpg', 'cat.4764.jpg', 'cat.4782.jpg'] iface = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) iface.launch()