File size: 814 Bytes
b9c4e27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
378fd2a
b9c4e27
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from fastai.vision.all import *
import gradio as gr
import pathlib, os

# def greet(name):
#     return "Hello " + name + "!!!!"

def is_cat(x): return x[0].isupper()

categories = ['Dog', 'Cat']

def classify_image(img):

    if os.name == 'nt': # workaround for Windows
        pathlib.PosixPath = pathlib.WindowsPath 

    learn = load_learner('model_cat-or-dog.pkl')
    pred,idx,probs = learn.predict(img)
    return dict(zip(categories, map(float, probs)))

image = gr.inputs.Image(shape=(192,192))
label = gr.outputs.Label()
examples = ['img_20180720_163054.jpg', 'img_20210614_141029.jpg', 'img_20210614_140945.jpg', 'img_20210613_193627.jpg', 'img_20210613_184022.jpg', 'cat.4764.jpg', 'cat.4782.jpg']

iface = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
iface.launch()