import gradio as gr from transformers import AutoModelForSeq2SeqLM, AutoTokenizer def execute_sql(user_query): model_name = "microsoft/tapex-large-sql-execution" # Tapex large SQL execution model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) inputs = tokenizer(user_query, return_tensors="pt", padding=True) outputs = model.generate(inputs['input_ids'], attention_mask=inputs['attention_mask'], max_length=1024) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response ''' def chatbot_response(user_message): # Your chatbot code goes here (using GPT-2 or any other text generation model) # For example, you can use the GPT-2 code from the previous responses return chatbot_generated_response # Define the chatbot and SQL execution interface using Gradio chatbot_interface = gr.Interface( fn=chatbot_response, inputs=gr.Textbox(prompt="You:"), outputs=gr.Textbox(), live=True, capture_session=True, title="Chatbot", description="Type your message in the box above, and the chatbot will respond.", ) ''' sql_execution_interface = gr.Interface( fn=execute_sql, inputs=gr.Textbox(prompt="Enter your SQL query:"), outputs=gr.Textbox(), live=True, capture_session=True, title="SQL Execution", description="Type your SQL query in the box above, and the chatbot will execute it.", ) # Combine the chatbot and SQL execution interfaces #combined_interface = gr.Interface([chatbot_interface, sql_execution_interface], layout="horizontal") # Launch the combined Gradio interface if __name__ == "__main__": sql_execution_interface.launch()