Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,24 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
return response
|
| 14 |
|
| 15 |
# Define the chatbot interface using Gradio
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import TapexTokenizer, BartForConditionalGeneration
|
| 3 |
+
import pandas as pd
|
| 4 |
|
| 5 |
+
model_name = "microsoft/tapex-large-sql-execution" # You can change this to any other model from the list above
|
| 6 |
+
tokenizer = TapexTokenizer.from_pretrained(model_name)
|
| 7 |
+
model = BartForConditionalGeneration.from_pretrained(model_name)
|
|
|
|
| 8 |
|
| 9 |
+
data = {
|
| 10 |
+
"year": [1896, 1900, 1904, 2004, 2008, 2012],
|
| 11 |
+
"city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
|
| 12 |
+
}
|
| 13 |
+
table = pd.DataFrame.from_dict(data)
|
| 14 |
|
| 15 |
+
def chatbot_response(user_message):
|
| 16 |
+
|
| 17 |
+
inputs = tokenizer.encode("User: " + user_message, return_tensors="pt")
|
| 18 |
+
encoding = tokenizer(table=table, query=inputs, return_tensors="pt")
|
| 19 |
+
outputs = model.generate(**encoding)
|
| 20 |
+
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 21 |
+
|
| 22 |
return response
|
| 23 |
|
| 24 |
# Define the chatbot interface using Gradio
|