Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,28 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
|
3 |
-
from transformers import TapasTokenizer, TapasForQuestionAnswering
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
|
10 |
-
|
|
|
11 |
outputs = model(**inputs)
|
12 |
answer = tokenizer.decode(inputs['input_ids'][0][outputs['start_logits'].argmax():outputs['end_logits'].argmax() + 1])
|
13 |
-
|
14 |
return answer
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
# Your chatbot code goes here (using GPT-2 or any other text generation model)
|
19 |
-
# For example, you can use the GPT-2 code from the previous responses
|
20 |
-
|
21 |
-
return chatbot_generated_response
|
22 |
-
|
23 |
-
# Define the chatbot and SQL execution interface using Gradio
|
24 |
-
chatbot_interface = gr.Interface(
|
25 |
-
fn=chatbot_response,
|
26 |
-
inputs=gr.Textbox(prompt="You:"),
|
27 |
-
outputs=gr.Textbox(),
|
28 |
-
live=True,
|
29 |
-
capture_session=True,
|
30 |
-
title="Chatbot",
|
31 |
-
description="Type your message in the box above, and the chatbot will respond.",
|
32 |
-
)
|
33 |
-
'''
|
34 |
-
|
35 |
-
sql_execution_interface = gr.Interface(
|
36 |
fn=execute_sql,
|
37 |
-
inputs=gr.Textbox(prompt="Enter your
|
38 |
outputs=gr.Textbox(),
|
39 |
live=True,
|
40 |
capture_session=True,
|
41 |
-
title="
|
42 |
-
description="Type your
|
43 |
)
|
44 |
|
45 |
-
#
|
46 |
-
#combined_interface = gr.Interface([chatbot_interface, sql_execution_interface], layout="horizontal")
|
47 |
-
|
48 |
-
# Launch the combined Gradio interface
|
49 |
if __name__ == "__main__":
|
50 |
-
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
|
|
|
3 |
|
4 |
+
# Load the Tapas model and tokenizer
|
5 |
+
model_name = "google/tapas-large-finetuned-wtq"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
8 |
|
9 |
+
def execute_sql(user_query):
|
10 |
+
inputs = tokenizer(user_query, return_tensors="pt")
|
11 |
outputs = model(**inputs)
|
12 |
answer = tokenizer.decode(inputs['input_ids'][0][outputs['start_logits'].argmax():outputs['end_logits'].argmax() + 1])
|
|
|
13 |
return answer
|
14 |
|
15 |
+
# Define the chatbot interface using Gradio
|
16 |
+
iface = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
fn=execute_sql,
|
18 |
+
inputs=gr.Textbox(prompt="Enter your question:"),
|
19 |
outputs=gr.Textbox(),
|
20 |
live=True,
|
21 |
capture_session=True,
|
22 |
+
title="Database Question Answering Chatbot",
|
23 |
+
description="Type your questions about the database in the box above, and the chatbot will provide answers.",
|
24 |
)
|
25 |
|
26 |
+
# Launch the Gradio interface
|
|
|
|
|
|
|
27 |
if __name__ == "__main__":
|
28 |
+
iface.launch()
|