Update app.py
Browse files
app.py
CHANGED
@@ -44,14 +44,16 @@ def predict(input, history=[]):
|
|
44 |
|
45 |
if is_question:
|
46 |
sql_encoding = sql_tokenizer(table=table, query=input + sql_tokenizer.eos_token, return_tensors="pt")
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
bot_input_ids = torch.cat([torch.LongTensor(history), sql_encoding], dim=-1)
|
51 |
history = sql_model.generate(bot_input_ids, max_length=1000, pad_token_id=sql_tokenizer.eos_token_id).tolist()
|
52 |
response = sql_tokenizer.decode(history[0]).split("<|endoftext|>")
|
53 |
response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)]
|
54 |
-
|
55 |
else:
|
56 |
# tokenize the new input sentence
|
57 |
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
|
|
44 |
|
45 |
if is_question:
|
46 |
sql_encoding = sql_tokenizer(table=table, query=input + sql_tokenizer.eos_token, return_tensors="pt")
|
47 |
+
sql_outputs = sql_model.generate(**sql_encoding)
|
48 |
+
response = sql_tokenizer.batch_decode(sql_outputs, skip_special_tokens=True)
|
49 |
+
|
50 |
+
history.append(response)
|
51 |
+
'''
|
52 |
bot_input_ids = torch.cat([torch.LongTensor(history), sql_encoding], dim=-1)
|
53 |
history = sql_model.generate(bot_input_ids, max_length=1000, pad_token_id=sql_tokenizer.eos_token_id).tolist()
|
54 |
response = sql_tokenizer.decode(history[0]).split("<|endoftext|>")
|
55 |
response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)]
|
56 |
+
'''
|
57 |
else:
|
58 |
# tokenize the new input sentence
|
59 |
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|