File size: 950 Bytes
ec9ef8b
e030ac0
f24bed6
e030ac0
abad0fd
 
 
e030ac0
abad0fd
 
 
e030ac0
 
 
abad0fd
 
e030ac0
 
 
 
 
 
 
 
f24bed6
abad0fd
23432db
abad0fd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer

def chatbot_response(user_message):
    model_name = "gpt2"  # You can change this to any other model from the list above
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)

    inputs = tokenizer.encode("User: " + user_message, return_tensors="pt")
    outputs = model.generate(inputs, max_length=100, num_return_sequences=1)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    return response

# Define the chatbot interface using Gradio
iface = gr.Interface(
    fn=chatbot_response,
    inputs=gr.Textbox(prompt="You:"),
    outputs=gr.Textbox(),
    live=True,
    capture_session=True,
    title="Chatbot",
    description="Type your message in the box above, and the chatbot will respond.",
)

# Launch the Gradio interface
if __name__ == "__main__":
    iface.launch()