Spaces:
Runtime error
Runtime error
| # This file is from: https://github.com/ggerganov/llama.cpp | |
| # And it converts LLaMA model's pytorch_model.bin to ggml compatible file | |
| # Load the model using Torch | |
| # Iterate over all variables and write them to a binary file. | |
| # For each variable, write the following: | |
| # - Number of dimensions (int) | |
| # - Name length (int) | |
| # - Dimensions (int[n_dims]) | |
| # - Name (char[name_length]) | |
| # - Data (float[n_dims]) | |
| # | |
| # By default, the bigger matrices are converted to 16-bit floats. | |
| # This can be disabled by adding the "use-f32" CLI argument. | |
| # | |
| # At the start of the ggml file we write the model parameters | |
| # and vocabulary. | |
| # | |
| import os | |
| import sys | |
| import json | |
| import struct | |
| import numpy as np | |
| import torch | |
| from sentencepiece import SentencePieceProcessor | |
| import argparse | |
| # args | |
| parser = argparse.ArgumentParser() | |
| # The original base model checkpoint dir | |
| parser.add_argument("--dir_model", type=str, default='lora-Vicuna/checkpoint-3000-with-lora/ckpt') | |
| # The finetuned lora model checkpoint dir | |
| parser.add_argument("--dir_out",type=str, default=None) | |
| # NOTE: you can find it in llama-7b dir | |
| parser.add_argument("--fname_tokenizer", type=str, default="lora-Vicuna/llama-7b/tokenizer.model") | |
| # 0=fp32, 1=fp16 | |
| parser.add_argument("--ftype", type=int, default=1) | |
| # NOTE: this parameter is n_parts split of the `consolidated.0x` checkpoint | |
| parser.add_argument("--shard", type=int, default=None) | |
| args = parser.parse_args() | |
| if args.dir_out is None: dir_out = args.dir_model # output in the same directory as the model | |
| dir_model = args.dir_model | |
| ftype=args.ftype | |
| fname_tokenizer=args.fname_tokenizer | |
| fname_hparams = dir_model + "/params.json" | |
| # possible data types | |
| # ftype == 0 -> float32 | |
| # ftype == 1 -> float16 | |
| # | |
| # map from ftype to string | |
| ftype_str = ["f32", "f16"] | |
| if ftype < 0 or ftype > 1: | |
| print("Invalid ftype: " + str(ftype)) | |
| sys.exit(1) | |
| fname_out = dir_out + "/ggml-model-" + ftype_str[ftype] + ".bin" | |
| if os.path.exists(fname_out): | |
| print(f"Skip conversion, it already exists: {fname_out}") | |
| sys.exit(0) | |
| with open(fname_hparams, "r") as f: | |
| hparams = json.load(f) | |
| tokenizer = SentencePieceProcessor(fname_tokenizer) | |
| hparams.update({"vocab_size": tokenizer.vocab_size()}) | |
| def get_n_parts(dim): | |
| if dim == 4096: | |
| return 1 | |
| elif dim == 5120: | |
| return 2 | |
| elif dim == 6656: | |
| return 4 | |
| elif dim == 8192: | |
| return 8 | |
| else: | |
| print("Invalid dim: " + str(dim)) | |
| sys.exit(1) | |
| if args.shard is None: # default | |
| n_parts = get_n_parts(hparams["dim"]) | |
| else: | |
| n_parts = args.shard | |
| print(hparams) | |
| print('n_parts = ', n_parts) | |
| for p in range(n_parts): | |
| print('Processing part ', p) | |
| fname_model = dir_model + "/consolidated.0" + str(p) + ".pth" | |
| fname_out = dir_out + "/ggml-model-" + ftype_str[ftype] + ".bin" | |
| if (p > 0): | |
| fname_out = dir_out + "/ggml-model-" + ftype_str[ftype] + ".bin" + "." + str(p) | |
| model = torch.load(fname_model, map_location="cpu") | |
| fout = open(fname_out, "wb") | |
| fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex | |
| fout.write(struct.pack("i", hparams["vocab_size"])) | |
| fout.write(struct.pack("i", hparams["dim"])) | |
| fout.write(struct.pack("i", hparams["multiple_of"])) | |
| fout.write(struct.pack("i", hparams["n_heads"])) | |
| fout.write(struct.pack("i", hparams["n_layers"])) | |
| fout.write(struct.pack("i", hparams["dim"] // hparams["n_heads"])) # rot (obsolete) | |
| fout.write(struct.pack("i", ftype)) | |
| # Is this correct?? | |
| for i in range(tokenizer.vocab_size()): | |
| if tokenizer.is_unknown(i): | |
| # "<unk>" token (translated as ??) | |
| text = " \u2047 ".encode("utf-8") | |
| fout.write(struct.pack("i", len(text))) | |
| fout.write(text) | |
| elif tokenizer.is_control(i): | |
| # "<s>"/"</s>" tokens | |
| fout.write(struct.pack("i", 0)) | |
| elif tokenizer.is_byte(i): | |
| # "<U+XX>" tokens (which may be invalid UTF-8) | |
| piece = tokenizer.id_to_piece(i) | |
| if len(piece) != 6: | |
| print("Invalid token: " + piece) | |
| sys.exit(1) | |
| byte_value = int(piece[3:-1], 16) | |
| fout.write(struct.pack("i", 1)) | |
| fout.write(struct.pack("B", byte_value)) | |
| else: | |
| # normal token. Uses U+2581 (LOWER ONE EIGHTH BLOCK) to represent spaces. | |
| text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8") | |
| fout.write(struct.pack("i", len(text))) | |
| fout.write(text) | |
| for k, v in model.items(): | |
| name = k | |
| shape = v.shape | |
| # skip layers.X.attention.inner_attention.rope.freqs | |
| if name[-5:] == "freqs": | |
| continue | |
| print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype) | |
| #data = tf.train.load_variable(dir_model, name).squeeze() | |
| data = v.numpy().squeeze() | |
| n_dims = len(data.shape) | |
| # for efficiency - transpose some matrices | |
| # "model/h.*/attn/c_attn/w" | |
| # "model/h.*/attn/c_proj/w" | |
| # "model/h.*/mlp/c_fc/w" | |
| # "model/h.*/mlp/c_proj/w" | |
| #if name[-14:] == "/attn/c_attn/w" or \ | |
| # name[-14:] == "/attn/c_proj/w" or \ | |
| # name[-11:] == "/mlp/c_fc/w" or \ | |
| # name[-13:] == "/mlp/c_proj/w": | |
| # print(" Transposing") | |
| # data = data.transpose() | |
| dshape = data.shape | |
| # default type is fp16 | |
| ftype_cur = 1 | |
| if ftype == 0 or n_dims == 1: | |
| print(" Converting to float32") | |
| data = data.astype(np.float32) | |
| ftype_cur = 0 | |
| # header | |
| sname = name.encode('utf-8') | |
| fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur)) | |
| for i in range(n_dims): | |
| fout.write(struct.pack("i", dshape[n_dims - 1 - i])) | |
| fout.write(sname) | |
| # data | |
| data.tofile(fout) | |
| # I hope this deallocates the memory .. | |
| model = None | |
| fout.close() | |
| print("Done. Output file: " + fname_out + ", (part ", p, ")") | |
| print("") | |