File size: 10,310 Bytes
6f6bd67
fd9106d
 
 
 
 
 
6f6bd67
fd9106d
 
 
 
 
 
 
 
 
 
6f6bd67
 
fd9106d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import gradio as gr
from pathlib import Path
from PIL import Image
import os
# from utils import get_image_paths, show_images2
import matplotlib.pyplot as plt
import numpy as np

import matplotlib.pyplot as plt
import os
import tensorflow as tf
from sklearn.metrics.pairwise import cosine_similarity
from pathlib import Path
import numpy as np
from tqdm import tqdm
from collections import OrderedDict
import compress_pickle
import concurrent


class ImageSimilarity:
    def __init__(
        self,
        img_dir: Path,
        recursive: bool = False,
        BATCH_SIZE: int = 64,
        IMG_SIZE: int = 224,
        save_model: bool = True,
    ):
        self.batch_size = BATCH_SIZE
        self.img_size = IMG_SIZE
        self.img_dir = img_dir
        self.model = tf.keras.applications.MobileNetV2(
            input_shape=(IMG_SIZE, IMG_SIZE, 3),
            alpha=1.0,
            include_top=False,
            weights="imagenet",
            input_tensor=None,
            pooling=None,
            classifier_activation="softmax",
        )

        self.model.trainable = False
        self.model.compile()

        self.save_model = save_model
        self.recursive = recursive
        self.ifeatures = None
        self.filename = "image_dict.lzma"
        self.image_dict = None
        self.images_found = None

    def get_image_paths(self, directory_path: Path, recursive: bool = False) -> list:
        image_extensions = [".jpg", ".jpeg", ".png"]  # Add more extensions if needed
        image_paths = []

        for file_path in directory_path.iterdir():
            if file_path.is_file() and (file_path.suffix.lower() in image_extensions):
                image_paths.append(str(file_path.absolute()))

            elif recursive and file_path.is_dir():
                image_paths.extend(self.get_image_paths(file_path, recursive))

        return image_paths

    def load_image(self, x):
        image_data = tf.io.read_file(x)
        image_features = tf.image.decode_jpeg(image_data, channels=3)
        image_features = tf.image.resize(image_features, (self.img_size, self.img_size))
        return image_features

    def load_image2(self, x):
        image_data = tf.keras.utils.img_to_array(x)
        return tf.image.resize(image_data, (self.img_size, self.img_size))

    def get_vectors(self, image_data: tf.data.Dataset) -> np.array:
        features = []
        for i in tqdm(image_data):
            y = self.model(i)
            pooled_features = tf.keras.layers.GlobalMaxPooling2D()(y)
            features.append(pooled_features)

        ifeatures = tf.concat(features, axis=0)
        ifeatures = tf.cast(ifeatures, tf.float16).numpy()
        return ifeatures

    def similar_image(self, x, k=5):
        x = (
            self.load_image(str(x.absolute()))
            if isinstance(x, Path)
            else self.load_image2(x)
        )

        x_logits = self.model(tf.expand_dims(x, 0))
        x_logits = (
            tf.keras.layers.GlobalAveragePooling2D()(x_logits)
            .numpy()
            .astype("float16")
            .reshape((1, -1))
            .tolist()
        )

        x_similarity = cosine_similarity(x_logits, self.ifeatures).tolist()[0]

        x_sim_idx = np.argsort(x_similarity)[::-1][:k]
        x_sim_values = sorted(x_similarity, reverse=True)[:k]
        keys_at_indices = [list(self.image_dict.keys())[index] for index in x_sim_idx]
        return keys_at_indices, x_sim_values

    def build_image_features(self):
        images = self.get_image_paths(self.img_dir, recursive=self.recursive)

        image_data = (
            tf.data.Dataset.from_tensor_slices(images)
            .map(self.load_image, num_parallel_calls=tf.data.AUTOTUNE)
            .batch(self.batch_size)
        )

        self.ifeatures = self.get_vectors(image_data)
        self.image_dict = OrderedDict(zip(images, self.ifeatures))

        # print('ifeatures.shape:', self.ifeatures.shape)
        # print('Features loaded!')

    def load_image_dict(self):
        if os.path.isfile(self.filename):
            image_dict = compress_pickle.load(self.filename, compression="lzma")
            images = self.get_image_paths(self.img_dir, recursive=self.recursive)
            if images == list(image_dict.keys()):
                self.image_dict = image_dict
                self.ifeatures = np.array(list(image_dict.values()))
            else:
                self.build_image_features()
        else:
            self.build_image_features()

    def save_image_dict(self):
        compress_pickle.dump(self.image_dict, self.filename, compression="lzma")

    def is_changed(self):
        images = self.get_image_paths(self.img_dir, recursive=self.recursive)
        previous_images = list(self.image_dict.keys())
        return images != previous_images

    def find_similar_images(self, x, k=5):
        # creating/loading vectors
        self.load_image_dict()
        if k == -1:
            k = self.ifeatures.shape[0]

        sim_img, x_sim = self.similar_image(x, k=k)
        # print('plotting')
        plt.figure(figsize=(5, 5))
        testimg = plt.imread(str(x.absolute()))
        plt.imshow(testimg)
        plt.title(f"{x.name}(main)")
        plt.show()
        self.show_images(sim_img, similar=x_sim)
        return x_sim

    def find_similar_images2(self, x, k=5):
        self.load_image_dict()
        if k == -1:
            k = self.ifeatures.shape[0]

        sim_img, x_sim = self.similar_image(x, k=k)
        return sim_img, x_sim

    def show_images(self, x: list, similar: list = None, figsize=None):
        n_plots = len(x)
        # print('n plots: ', n_plots)
        if figsize is None:
            # figsize = (20, int(n_plots // 5) * 4)
            figsize = (20, 5)

        # print('figsize: ',figsize)
        plt.figure(figsize=figsize)

        x = [Path(i) for i in x]
        for num, i in enumerate(x, 1):
            plt.subplot((n_plots // 5) + 1, 5, num)
            img = plt.imread(i)
            plt.imshow(img)
            title = (
                f"{i.name}\n({100 * similar[num - 1]:.2f}%)"
                if similar is not None
                else i.name
            )
            plt.title(title)
            plt.axis(False)
            plt.tight_layout()

        plt.show()

    def __call__(self, x: Path, k=5):
        with concurrent.futures.ThreadPoolExecutor() as executor:
            finding = executor.submit(self.find_similar_images(x, k=5))

            if self.save_model and (
                self.is_changed() or (not Path(self.filename).exists())
            ):
                save_imagedict = executor.submit(self.save_image_dict)


def resize_image(img_path, max_size=800):
    with Image.open(img_path) as img:
        # change the size of the image to max_size but keep the aspect ratio
        width, height = img.size
        if width > height:
            new_width = max_size
            new_height = int(height * (new_width / width))
        else:
            new_height = max_size
            new_width = int(width * (new_height / height))
        img = img.resize((new_width, new_height))
        return img



def get_image_paths(directory_path: Path, recursive: bool = False) -> list:
    image_extensions = [".jpg", ".jpeg", ".png"]  # Add more extensions if needed
    image_paths = []

    for file_path in directory_path.iterdir():
        if file_path.is_file() and (file_path.suffix.lower() in image_extensions):
            image_paths.append(str(file_path.absolute()))

        elif recursive and file_path.is_dir():
            image_paths.extend(get_image_paths(file_path, recursive))

    return image_paths

def find_similar_images(img_dir, img_path, similar_images, save_model, recursive):
    if img_dir and (img_path):
        total_images = len(get_image_paths(Path(img_dir), recursive=recursive))
        similar_images = min(similar_images, total_images)

        main_image = Image.open(img_path) if isinstance(img_path, str) else Image.fromarray(img_path)
        image_similarity = ImageSimilarity(
            img_dir=Path(img_dir), recursive=recursive, save_model=save_model
        )

        similar_image_paths, similarity_values = image_similarity.find_similar_images2(main_image, k=similar_images)

        # print(similar_image_paths, similarity_values)

        if save_model:
            image_similarity.save_image_dict()

        # Prepare the output
        status = f"Found {len(similar_image_paths)} similar images."
        
        # Resize and load similar images
        similar_images_list = [
            (resize_image(path), f"Similarity: {sim:.4f}")
            for path, sim in zip(similar_image_paths, similarity_values)
        ]

        # Resize the main image
        resized_main_image = resize_image(img_path)

        return status, resized_main_image, similar_images_list

    return "Please provide both directory and image path.", None, None



with gr.Blocks() as demo:
    gr.Markdown("# Photo2Photo Search Engine")
    
    with gr.Row():
        with gr.Column(scale=5):
            img_dir = gr.Textbox(label="Directory to search")
        with gr.Column(scale=3):
            img_path = gr.Image(label="Upload an image", type="filepath")
    
    with gr.Row():
        with gr.Column(scale=1):
            similar_images = gr.Number(label="Number of similar images to display:", value=7, minimum=1, maximum=50, step=1)
        with gr.Column(scale=1):
            save_model = gr.Checkbox(label="Save Model", value=False, info="Save the model for faster loads, check if you search in same folder again and again")
            recursive = gr.Checkbox(label="Recursive", value=False, info="Search recursively for images in child folders")
        with gr.Column(scale=1):
            submit_button = gr.Button("Find Similar Images")
    
    output_text = gr.Textbox(label="Status")
    main_image_output = gr.Image(label="Main Image")
    similar_images_output = gr.Gallery(label="Similar Images", show_label=True)
    
    submit_button.click(
        find_similar_images,
        inputs=[img_dir, img_path, similar_images, save_model, recursive],
        outputs=[output_text, main_image_output, similar_images_output]
    )



if __name__ == "__main__":
    demo.launch()