File size: 10,310 Bytes
6f6bd67 fd9106d 6f6bd67 fd9106d 6f6bd67 fd9106d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import gradio as gr
from pathlib import Path
from PIL import Image
import os
# from utils import get_image_paths, show_images2
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.pyplot as plt
import os
import tensorflow as tf
from sklearn.metrics.pairwise import cosine_similarity
from pathlib import Path
import numpy as np
from tqdm import tqdm
from collections import OrderedDict
import compress_pickle
import concurrent
class ImageSimilarity:
def __init__(
self,
img_dir: Path,
recursive: bool = False,
BATCH_SIZE: int = 64,
IMG_SIZE: int = 224,
save_model: bool = True,
):
self.batch_size = BATCH_SIZE
self.img_size = IMG_SIZE
self.img_dir = img_dir
self.model = tf.keras.applications.MobileNetV2(
input_shape=(IMG_SIZE, IMG_SIZE, 3),
alpha=1.0,
include_top=False,
weights="imagenet",
input_tensor=None,
pooling=None,
classifier_activation="softmax",
)
self.model.trainable = False
self.model.compile()
self.save_model = save_model
self.recursive = recursive
self.ifeatures = None
self.filename = "image_dict.lzma"
self.image_dict = None
self.images_found = None
def get_image_paths(self, directory_path: Path, recursive: bool = False) -> list:
image_extensions = [".jpg", ".jpeg", ".png"] # Add more extensions if needed
image_paths = []
for file_path in directory_path.iterdir():
if file_path.is_file() and (file_path.suffix.lower() in image_extensions):
image_paths.append(str(file_path.absolute()))
elif recursive and file_path.is_dir():
image_paths.extend(self.get_image_paths(file_path, recursive))
return image_paths
def load_image(self, x):
image_data = tf.io.read_file(x)
image_features = tf.image.decode_jpeg(image_data, channels=3)
image_features = tf.image.resize(image_features, (self.img_size, self.img_size))
return image_features
def load_image2(self, x):
image_data = tf.keras.utils.img_to_array(x)
return tf.image.resize(image_data, (self.img_size, self.img_size))
def get_vectors(self, image_data: tf.data.Dataset) -> np.array:
features = []
for i in tqdm(image_data):
y = self.model(i)
pooled_features = tf.keras.layers.GlobalMaxPooling2D()(y)
features.append(pooled_features)
ifeatures = tf.concat(features, axis=0)
ifeatures = tf.cast(ifeatures, tf.float16).numpy()
return ifeatures
def similar_image(self, x, k=5):
x = (
self.load_image(str(x.absolute()))
if isinstance(x, Path)
else self.load_image2(x)
)
x_logits = self.model(tf.expand_dims(x, 0))
x_logits = (
tf.keras.layers.GlobalAveragePooling2D()(x_logits)
.numpy()
.astype("float16")
.reshape((1, -1))
.tolist()
)
x_similarity = cosine_similarity(x_logits, self.ifeatures).tolist()[0]
x_sim_idx = np.argsort(x_similarity)[::-1][:k]
x_sim_values = sorted(x_similarity, reverse=True)[:k]
keys_at_indices = [list(self.image_dict.keys())[index] for index in x_sim_idx]
return keys_at_indices, x_sim_values
def build_image_features(self):
images = self.get_image_paths(self.img_dir, recursive=self.recursive)
image_data = (
tf.data.Dataset.from_tensor_slices(images)
.map(self.load_image, num_parallel_calls=tf.data.AUTOTUNE)
.batch(self.batch_size)
)
self.ifeatures = self.get_vectors(image_data)
self.image_dict = OrderedDict(zip(images, self.ifeatures))
# print('ifeatures.shape:', self.ifeatures.shape)
# print('Features loaded!')
def load_image_dict(self):
if os.path.isfile(self.filename):
image_dict = compress_pickle.load(self.filename, compression="lzma")
images = self.get_image_paths(self.img_dir, recursive=self.recursive)
if images == list(image_dict.keys()):
self.image_dict = image_dict
self.ifeatures = np.array(list(image_dict.values()))
else:
self.build_image_features()
else:
self.build_image_features()
def save_image_dict(self):
compress_pickle.dump(self.image_dict, self.filename, compression="lzma")
def is_changed(self):
images = self.get_image_paths(self.img_dir, recursive=self.recursive)
previous_images = list(self.image_dict.keys())
return images != previous_images
def find_similar_images(self, x, k=5):
# creating/loading vectors
self.load_image_dict()
if k == -1:
k = self.ifeatures.shape[0]
sim_img, x_sim = self.similar_image(x, k=k)
# print('plotting')
plt.figure(figsize=(5, 5))
testimg = plt.imread(str(x.absolute()))
plt.imshow(testimg)
plt.title(f"{x.name}(main)")
plt.show()
self.show_images(sim_img, similar=x_sim)
return x_sim
def find_similar_images2(self, x, k=5):
self.load_image_dict()
if k == -1:
k = self.ifeatures.shape[0]
sim_img, x_sim = self.similar_image(x, k=k)
return sim_img, x_sim
def show_images(self, x: list, similar: list = None, figsize=None):
n_plots = len(x)
# print('n plots: ', n_plots)
if figsize is None:
# figsize = (20, int(n_plots // 5) * 4)
figsize = (20, 5)
# print('figsize: ',figsize)
plt.figure(figsize=figsize)
x = [Path(i) for i in x]
for num, i in enumerate(x, 1):
plt.subplot((n_plots // 5) + 1, 5, num)
img = plt.imread(i)
plt.imshow(img)
title = (
f"{i.name}\n({100 * similar[num - 1]:.2f}%)"
if similar is not None
else i.name
)
plt.title(title)
plt.axis(False)
plt.tight_layout()
plt.show()
def __call__(self, x: Path, k=5):
with concurrent.futures.ThreadPoolExecutor() as executor:
finding = executor.submit(self.find_similar_images(x, k=5))
if self.save_model and (
self.is_changed() or (not Path(self.filename).exists())
):
save_imagedict = executor.submit(self.save_image_dict)
def resize_image(img_path, max_size=800):
with Image.open(img_path) as img:
# change the size of the image to max_size but keep the aspect ratio
width, height = img.size
if width > height:
new_width = max_size
new_height = int(height * (new_width / width))
else:
new_height = max_size
new_width = int(width * (new_height / height))
img = img.resize((new_width, new_height))
return img
def get_image_paths(directory_path: Path, recursive: bool = False) -> list:
image_extensions = [".jpg", ".jpeg", ".png"] # Add more extensions if needed
image_paths = []
for file_path in directory_path.iterdir():
if file_path.is_file() and (file_path.suffix.lower() in image_extensions):
image_paths.append(str(file_path.absolute()))
elif recursive and file_path.is_dir():
image_paths.extend(get_image_paths(file_path, recursive))
return image_paths
def find_similar_images(img_dir, img_path, similar_images, save_model, recursive):
if img_dir and (img_path):
total_images = len(get_image_paths(Path(img_dir), recursive=recursive))
similar_images = min(similar_images, total_images)
main_image = Image.open(img_path) if isinstance(img_path, str) else Image.fromarray(img_path)
image_similarity = ImageSimilarity(
img_dir=Path(img_dir), recursive=recursive, save_model=save_model
)
similar_image_paths, similarity_values = image_similarity.find_similar_images2(main_image, k=similar_images)
# print(similar_image_paths, similarity_values)
if save_model:
image_similarity.save_image_dict()
# Prepare the output
status = f"Found {len(similar_image_paths)} similar images."
# Resize and load similar images
similar_images_list = [
(resize_image(path), f"Similarity: {sim:.4f}")
for path, sim in zip(similar_image_paths, similarity_values)
]
# Resize the main image
resized_main_image = resize_image(img_path)
return status, resized_main_image, similar_images_list
return "Please provide both directory and image path.", None, None
with gr.Blocks() as demo:
gr.Markdown("# Photo2Photo Search Engine")
with gr.Row():
with gr.Column(scale=5):
img_dir = gr.Textbox(label="Directory to search")
with gr.Column(scale=3):
img_path = gr.Image(label="Upload an image", type="filepath")
with gr.Row():
with gr.Column(scale=1):
similar_images = gr.Number(label="Number of similar images to display:", value=7, minimum=1, maximum=50, step=1)
with gr.Column(scale=1):
save_model = gr.Checkbox(label="Save Model", value=False, info="Save the model for faster loads, check if you search in same folder again and again")
recursive = gr.Checkbox(label="Recursive", value=False, info="Search recursively for images in child folders")
with gr.Column(scale=1):
submit_button = gr.Button("Find Similar Images")
output_text = gr.Textbox(label="Status")
main_image_output = gr.Image(label="Main Image")
similar_images_output = gr.Gallery(label="Similar Images", show_label=True)
submit_button.click(
find_similar_images,
inputs=[img_dir, img_path, similar_images, save_model, recursive],
outputs=[output_text, main_image_output, similar_images_output]
)
if __name__ == "__main__":
demo.launch()
|