Spaces:
Runtime error
Runtime error
taskswithcode
commited on
Commit
·
9dabfa9
1
Parent(s):
580bfe6
Added files
Browse files- app.py +56 -166
- sim_app_examples.json +5 -0
- sim_app_models.json +134 -0
app.py
CHANGED
|
@@ -1,161 +1,29 @@
|
|
| 1 |
import time
|
|
|
|
| 2 |
import streamlit as st
|
| 3 |
import string
|
| 4 |
from io import StringIO
|
| 5 |
import pdb
|
| 6 |
import json
|
| 7 |
-
from twc_embeddings import HFModel,SimCSEModel,SGPTModel
|
| 8 |
import torch
|
| 9 |
|
| 10 |
|
| 11 |
MAX_INPUT = 100
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
from transformers import BertTokenizer, BertForMaskedLM
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
{ "name":"sentence-transformers/all-MiniLM-L6-v2",
|
| 19 |
-
"model":"sentence-transformers/all-MiniLM-L6-v2",
|
| 20 |
-
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
|
| 21 |
-
"orig_author_url":"https://github.com/UKPLab",
|
| 22 |
-
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 23 |
-
"sota_info": {
|
| 24 |
-
"task":"Over 3.8 million downloads from huggingface",
|
| 25 |
-
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2"
|
| 26 |
-
},
|
| 27 |
-
"paper_url":"https://arxiv.org/abs/1908.10084",
|
| 28 |
-
"mark":True,
|
| 29 |
-
"class":"HFModel"},
|
| 30 |
-
{ "name":"sentence-transformers/paraphrase-MiniLM-L6-v2",
|
| 31 |
-
"model":"sentence-transformers/paraphrase-MiniLM-L6-v2",
|
| 32 |
-
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
|
| 33 |
-
"orig_author_url":"https://github.com/UKPLab",
|
| 34 |
-
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 35 |
-
"sota_info": {
|
| 36 |
-
"task":"Over 2 million downloads from huggingface",
|
| 37 |
-
"sota_link":"https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2"
|
| 38 |
-
},
|
| 39 |
-
"paper_url":"https://arxiv.org/abs/1908.10084",
|
| 40 |
-
"mark":True,
|
| 41 |
-
"class":"HFModel"},
|
| 42 |
-
{ "name":"sentence-transformers/bert-base-nli-mean-tokens",
|
| 43 |
-
"model":"sentence-transformers/bert-base-nli-mean-tokens",
|
| 44 |
-
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
|
| 45 |
-
"orig_author_url":"https://github.com/UKPLab",
|
| 46 |
-
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 47 |
-
"sota_info": {
|
| 48 |
-
"task":"Over 700,000 downloads from huggingface",
|
| 49 |
-
"sota_link":"https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens"
|
| 50 |
-
},
|
| 51 |
-
"paper_url":"https://arxiv.org/abs/1908.10084",
|
| 52 |
-
"mark":True,
|
| 53 |
-
"class":"HFModel"},
|
| 54 |
-
{ "name":"sentence-transformers/all-mpnet-base-v2",
|
| 55 |
-
"model":"sentence-transformers/all-mpnet-base-v2",
|
| 56 |
-
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
|
| 57 |
-
"orig_author_url":"https://github.com/UKPLab",
|
| 58 |
-
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 59 |
-
"sota_info": {
|
| 60 |
-
"task":"Over 500,000 downloads from huggingface",
|
| 61 |
-
"sota_link":"https://huggingface.co/sentence-transformers/all-mpnet-base-v2"
|
| 62 |
-
},
|
| 63 |
-
"paper_url":"https://arxiv.org/abs/1908.10084",
|
| 64 |
-
"mark":True,
|
| 65 |
-
"class":"HFModel"},
|
| 66 |
-
{ "name":"sentence-transformers/all-MiniLM-L12-v2",
|
| 67 |
-
"model":"sentence-transformers/all-MiniLM-L12-v2",
|
| 68 |
-
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
|
| 69 |
-
"orig_author_url":"https://github.com/UKPLab",
|
| 70 |
-
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 71 |
-
"sota_info": {
|
| 72 |
-
"task":"Over 500,000 downloads from huggingface",
|
| 73 |
-
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2"
|
| 74 |
-
},
|
| 75 |
-
"paper_url":"https://arxiv.org/abs/1908.10084",
|
| 76 |
-
"mark":True,
|
| 77 |
-
"class":"HFModel"},
|
| 78 |
-
|
| 79 |
-
{ "name":"SGPT-125M",
|
| 80 |
-
"model":"Muennighoff/SGPT-125M-weightedmean-nli-bitfit",
|
| 81 |
-
"fork_url":"https://github.com/taskswithcode/sgpt",
|
| 82 |
-
"orig_author_url":"https://github.com/Muennighoff",
|
| 83 |
-
"orig_author":"Niklas Muennighoff",
|
| 84 |
-
"sota_info": {
|
| 85 |
-
"task":"#1 in multiple information retrieval & search tasks(smaller variant)",
|
| 86 |
-
"sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic",
|
| 87 |
-
},
|
| 88 |
-
"paper_url":"https://arxiv.org/abs/2202.08904v5",
|
| 89 |
-
"mark":True,
|
| 90 |
-
"class":"SGPTModel"},
|
| 91 |
-
{ "name":"SGPT-1.3B",
|
| 92 |
-
"model": "Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit",
|
| 93 |
-
"fork_url":"https://github.com/taskswithcode/sgpt",
|
| 94 |
-
"orig_author_url":"https://github.com/Muennighoff",
|
| 95 |
-
"orig_author":"Niklas Muennighoff",
|
| 96 |
-
"sota_info": {
|
| 97 |
-
"task":"#1 in multiple information retrieval & search tasks(smaller variant)",
|
| 98 |
-
"sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic",
|
| 99 |
-
},
|
| 100 |
-
"paper_url":"https://arxiv.org/abs/2202.08904v5",
|
| 101 |
-
"Note":"If this large model takes too long or fails to load , try this ",
|
| 102 |
-
"alt_url":"http://www.taskswithcode.com/sentence_similarity/",
|
| 103 |
-
"mark":True,
|
| 104 |
-
"class":"SGPTModel"},
|
| 105 |
-
{ "name":"SGPT-5.8B",
|
| 106 |
-
"model": "Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit" ,
|
| 107 |
-
"fork_url":"https://github.com/taskswithcode/sgpt",
|
| 108 |
-
"orig_author_url":"https://github.com/Muennighoff",
|
| 109 |
-
"orig_author":"Niklas Muennighoff",
|
| 110 |
-
"Note":"If this large model takes too long or fails to load , try this ",
|
| 111 |
-
"alt_url":"http://www.taskswithcode.com/sentence_similarity/",
|
| 112 |
-
"sota_info": {
|
| 113 |
-
"task":"#1 in multiple information retrieval & search tasks",
|
| 114 |
-
"sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic",
|
| 115 |
-
},
|
| 116 |
-
"paper_url":"https://arxiv.org/abs/2202.08904v5",
|
| 117 |
-
"mark":True,
|
| 118 |
-
"class":"SGPTModel"},
|
| 119 |
-
|
| 120 |
-
{ "name":"SIMCSE-large" ,
|
| 121 |
-
"model":"princeton-nlp/sup-simcse-roberta-large",
|
| 122 |
-
"fork_url":"https://github.com/taskswithcode/SimCSE",
|
| 123 |
-
"orig_author_url":"https://github.com/princeton-nlp",
|
| 124 |
-
"orig_author":"Princeton Natural Language Processing",
|
| 125 |
-
"Note":"If this large model takes too long or fails to load , try this ",
|
| 126 |
-
"alt_url":"http://www.taskswithcode.com/sentence_similarity/",
|
| 127 |
-
"sota_info": {
|
| 128 |
-
"task":"Within top 10 in multiple semantic textual similarity tasks",
|
| 129 |
-
"sota_link":"https://paperswithcode.com/paper/simcse-simple-contrastive-learning-of"
|
| 130 |
-
},
|
| 131 |
-
"paper_url":"https://arxiv.org/abs/2104.08821v4",
|
| 132 |
-
"mark":True,
|
| 133 |
-
"class":"SimCSEModel","sota_link":"https://paperswithcode.com/sota/semantic-textual-similarity-on-sick"},
|
| 134 |
-
|
| 135 |
-
{ "name":"SIMCSE-base" ,
|
| 136 |
-
"model":"princeton-nlp/sup-simcse-roberta-base",
|
| 137 |
-
"fork_url":"https://github.com/taskswithcode/SimCSE",
|
| 138 |
-
"orig_author_url":"https://github.com/princeton-nlp",
|
| 139 |
-
"orig_author":"Princeton Natural Language Processing",
|
| 140 |
-
"sota_info": {
|
| 141 |
-
"task":"Within top 10 in multiple semantic textual similarity tasks(smaller variant)",
|
| 142 |
-
"sota_link":"https://paperswithcode.com/paper/simcse-simple-contrastive-learning-of"
|
| 143 |
-
},
|
| 144 |
-
"paper_url":"https://arxiv.org/abs/2104.08821v4",
|
| 145 |
-
"mark":True,
|
| 146 |
-
"class":"SimCSEModel","sota_link":"https://paperswithcode.com/sota/semantic-textual-similarity-on-sick"},
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
]
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
example_file_names = {
|
| 156 |
-
"Machine learning terms (30+ phrases)": "small_test.txt",
|
| 157 |
-
"Customer feedback mixed with noise (50+ sentences)":"larger_test.txt"
|
| 158 |
-
}
|
| 159 |
|
| 160 |
view_count_file = "view_count.txt"
|
| 161 |
|
|
@@ -177,12 +45,12 @@ def get_views():
|
|
| 177 |
|
| 178 |
|
| 179 |
|
| 180 |
-
def construct_model_info_for_display():
|
| 181 |
options_arr = []
|
| 182 |
markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b></div>"
|
| 183 |
for node in model_names:
|
| 184 |
options_arr .append(node["name"])
|
| 185 |
-
if (node["mark"] == True):
|
| 186 |
markdown_str += f"<div style=\"font-size:16px; color: #5f5f5f; text-align: left\"> • Model: <a href=\'{node['paper_url']}\' target='_blank'>{node['name']}</a><br/> Code released by: <a href=\'{node['orig_author_url']}\' target='_blank'>{node['orig_author']}</a><br/> Model info: <a href=\'{node['sota_info']['sota_link']}\' target='_blank'>{node['sota_info']['task']}</a></div>"
|
| 187 |
if ("Note" in node):
|
| 188 |
markdown_str += f"<div style=\"font-size:16px; color: #a91212; text-align: left\"> {node['Note']}<a href=\'{node['alt_url']}\' target='_blank'>link</a></div>"
|
|
@@ -194,7 +62,7 @@ def construct_model_info_for_display():
|
|
| 194 |
return options_arr,markdown_str
|
| 195 |
|
| 196 |
|
| 197 |
-
st.set_page_config(page_title='TWC - Compare popular/state-of-the-art models for
|
| 198 |
menu_items={
|
| 199 |
'About': 'This app was created by taskswithcode. http://taskswithcode.com'
|
| 200 |
|
|
@@ -206,7 +74,7 @@ with col:
|
|
| 206 |
|
| 207 |
|
| 208 |
@st.experimental_memo
|
| 209 |
-
def load_model(model_name):
|
| 210 |
try:
|
| 211 |
ret_model = None
|
| 212 |
for node in model_names:
|
|
@@ -235,18 +103,18 @@ def uncached_compute_similarity(sentences,_model,model_name,main_index):
|
|
| 235 |
#st.success("Similarity computation complete")
|
| 236 |
return results
|
| 237 |
|
| 238 |
-
def get_model_info(model_name):
|
| 239 |
for node in model_names:
|
| 240 |
if (model_name == node["name"]):
|
| 241 |
return node
|
| 242 |
|
| 243 |
-
def run_test(model_name,sentences,display_area,main_index,user_uploaded):
|
| 244 |
display_area.text("Loading model:" + model_name)
|
| 245 |
-
model_info = get_model_info(model_name)
|
| 246 |
if ("Note" in model_info):
|
| 247 |
fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
|
| 248 |
display_area.write(fail_link)
|
| 249 |
-
model = load_model(model_name)
|
| 250 |
display_area.text("Model " + model_name + " load complete")
|
| 251 |
try:
|
| 252 |
if (user_uploaded):
|
|
@@ -266,13 +134,20 @@ def run_test(model_name,sentences,display_area,main_index,user_uploaded):
|
|
| 266 |
|
| 267 |
|
| 268 |
|
| 269 |
-
def display_results(orig_sentences,main_index,results,response_info):
|
| 270 |
main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>"
|
| 271 |
-
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
| 273 |
body_sent = []
|
| 274 |
download_data = {}
|
|
|
|
| 275 |
for key in results:
|
|
|
|
|
|
|
|
|
|
| 276 |
index = orig_sentences.index(key) + 1
|
| 277 |
body_sent.append(f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\">{index}] {key} <b>{results[key]:.2f}</b></div>")
|
| 278 |
download_data[key] = f"{results[key]:.2f}"
|
|
@@ -287,9 +162,15 @@ def init_session():
|
|
| 287 |
st.session_state["main_index"] = 1
|
| 288 |
st.session_state["file_name"] = "default"
|
| 289 |
|
| 290 |
-
def
|
| 291 |
init_session()
|
| 292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
st.markdown(f"<div style='color: #9f9f9f; text-align: right'>views: {get_views()}</div>", unsafe_allow_html=True)
|
| 294 |
|
| 295 |
|
|
@@ -298,17 +179,23 @@ def main():
|
|
| 298 |
|
| 299 |
with st.form('twc_form'):
|
| 300 |
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
| 302 |
|
| 303 |
-
selected_file_index = st.selectbox(label='Example files ',
|
| 304 |
options = list(dict.keys(example_file_names)), index=0, key = "twc_file")
|
| 305 |
st.write("")
|
| 306 |
-
options_arr,markdown_str = construct_model_info_for_display()
|
| 307 |
selection_label = 'Step 2. Select Model'
|
| 308 |
selected_model = st.selectbox(label=selection_label,
|
| 309 |
options = options_arr, index=0, key = "twc_model")
|
| 310 |
st.write("")
|
| 311 |
-
|
|
|
|
|
|
|
|
|
|
| 312 |
st.write("")
|
| 313 |
submit_button = st.form_submit_button('Run')
|
| 314 |
|
|
@@ -321,8 +208,8 @@ def main():
|
|
| 321 |
st.session_state["file_name"] = uploaded_file.name
|
| 322 |
sentences = StringIO(uploaded_file.getvalue().decode("utf-8")).read()
|
| 323 |
else:
|
| 324 |
-
st.session_state["file_name"] = example_file_names[selected_file_index]
|
| 325 |
-
sentences = open(example_file_names[selected_file_index]).read()
|
| 326 |
sentences = sentences.split("\n")[:-1]
|
| 327 |
if (len(sentences) < main_index):
|
| 328 |
main_index = len(sentences)
|
|
@@ -332,12 +219,12 @@ def main():
|
|
| 332 |
sentences = sentences[:MAX_INPUT]
|
| 333 |
st.session_state["model_name"] = selected_model
|
| 334 |
st.session_state["main_index"] = main_index
|
| 335 |
-
results = run_test(selected_model,sentences,display_area,main_index - 1,(uploaded_file is not None))
|
| 336 |
display_area.empty()
|
| 337 |
with display_area.container():
|
| 338 |
device = 'GPU' if torch.cuda.is_available() else 'CPU'
|
| 339 |
response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for {len(sentences)} sentences"
|
| 340 |
-
display_results(sentences,main_index - 1,results,response_info)
|
| 341 |
#st.json(results)
|
| 342 |
st.download_button(
|
| 343 |
label="Download results as json",
|
|
@@ -359,5 +246,8 @@ def main():
|
|
| 359 |
|
| 360 |
|
| 361 |
if __name__ == "__main__":
|
| 362 |
-
|
|
|
|
|
|
|
|
|
|
| 363 |
|
|
|
|
| 1 |
import time
|
| 2 |
+
import sys
|
| 3 |
import streamlit as st
|
| 4 |
import string
|
| 5 |
from io import StringIO
|
| 6 |
import pdb
|
| 7 |
import json
|
| 8 |
+
from twc_embeddings import HFModel,SimCSEModel,SGPTModel,CausalLMModel,SGPTQnAModel
|
| 9 |
import torch
|
| 10 |
|
| 11 |
|
| 12 |
MAX_INPUT = 100
|
| 13 |
|
| 14 |
+
SEM_SIMILARITY="1"
|
| 15 |
+
DOC_RETRIEVAL="2"
|
| 16 |
+
CLUSTERING="3"
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
use_case = {"1":"Finding similar phrases/sentences","2":"Retrieving semantically matching information to a query. It may not be a factual match","3":"Clustering"}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
|
| 24 |
from transformers import BertTokenizer, BertForMaskedLM
|
| 25 |
|
| 26 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
view_count_file = "view_count.txt"
|
| 29 |
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
|
| 48 |
+
def construct_model_info_for_display(model_names):
|
| 49 |
options_arr = []
|
| 50 |
markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b></div>"
|
| 51 |
for node in model_names:
|
| 52 |
options_arr .append(node["name"])
|
| 53 |
+
if (node["mark"] == "True"):
|
| 54 |
markdown_str += f"<div style=\"font-size:16px; color: #5f5f5f; text-align: left\"> • Model: <a href=\'{node['paper_url']}\' target='_blank'>{node['name']}</a><br/> Code released by: <a href=\'{node['orig_author_url']}\' target='_blank'>{node['orig_author']}</a><br/> Model info: <a href=\'{node['sota_info']['sota_link']}\' target='_blank'>{node['sota_info']['task']}</a></div>"
|
| 55 |
if ("Note" in node):
|
| 56 |
markdown_str += f"<div style=\"font-size:16px; color: #a91212; text-align: left\"> {node['Note']}<a href=\'{node['alt_url']}\' target='_blank'>link</a></div>"
|
|
|
|
| 62 |
return options_arr,markdown_str
|
| 63 |
|
| 64 |
|
| 65 |
+
st.set_page_config(page_title='TWC - Compare popular/state-of-the-art models for tasks using sentence embeddings', page_icon="logo.jpg", layout='centered', initial_sidebar_state='auto',
|
| 66 |
menu_items={
|
| 67 |
'About': 'This app was created by taskswithcode. http://taskswithcode.com'
|
| 68 |
|
|
|
|
| 74 |
|
| 75 |
|
| 76 |
@st.experimental_memo
|
| 77 |
+
def load_model(model_name,model_names):
|
| 78 |
try:
|
| 79 |
ret_model = None
|
| 80 |
for node in model_names:
|
|
|
|
| 103 |
#st.success("Similarity computation complete")
|
| 104 |
return results
|
| 105 |
|
| 106 |
+
def get_model_info(model_names,model_name):
|
| 107 |
for node in model_names:
|
| 108 |
if (model_name == node["name"]):
|
| 109 |
return node
|
| 110 |
|
| 111 |
+
def run_test(model_names,model_name,sentences,display_area,main_index,user_uploaded):
|
| 112 |
display_area.text("Loading model:" + model_name)
|
| 113 |
+
model_info = get_model_info(model_names,model_name)
|
| 114 |
if ("Note" in model_info):
|
| 115 |
fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
|
| 116 |
display_area.write(fail_link)
|
| 117 |
+
model = load_model(model_name,model_names)
|
| 118 |
display_area.text("Model " + model_name + " load complete")
|
| 119 |
try:
|
| 120 |
if (user_uploaded):
|
|
|
|
| 134 |
|
| 135 |
|
| 136 |
|
| 137 |
+
def display_results(orig_sentences,main_index,results,response_info,app_mode):
|
| 138 |
main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>"
|
| 139 |
+
score_text = "cosine_distance" if app_mode == "similarity" else "cosine_distance/score"
|
| 140 |
+
pivot_name = "main sentence" if app_mode == "similarity" else "query"
|
| 141 |
+
main_sent += f"<div style=\"font-size:14px; color: #6f6f6f; text-align: left\">Results sorted by {score_text}. Closest to furthest away from {pivot_name}</div>"
|
| 142 |
+
pivot_name = pivot_name[0].upper() + pivot_name[1:]
|
| 143 |
+
main_sent += f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><b>{pivot_name}:</b> {orig_sentences[main_index]}</div>"
|
| 144 |
body_sent = []
|
| 145 |
download_data = {}
|
| 146 |
+
first = True
|
| 147 |
for key in results:
|
| 148 |
+
if (app_mode == DOC_RETRIEVAL and first):
|
| 149 |
+
first = False
|
| 150 |
+
continue
|
| 151 |
index = orig_sentences.index(key) + 1
|
| 152 |
body_sent.append(f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\">{index}] {key} <b>{results[key]:.2f}</b></div>")
|
| 153 |
download_data[key] = f"{results[key]:.2f}"
|
|
|
|
| 162 |
st.session_state["main_index"] = 1
|
| 163 |
st.session_state["file_name"] = "default"
|
| 164 |
|
| 165 |
+
def app_main(app_mode,example_files,model_name_files):
|
| 166 |
init_session()
|
| 167 |
+
with open(example_files) as fp:
|
| 168 |
+
example_file_names = json.load(fp)
|
| 169 |
+
with open(model_name_files) as fp:
|
| 170 |
+
model_names = json.load(fp)
|
| 171 |
+
curr_use_case = use_case[app_mode].split(".")[0]
|
| 172 |
+
st.markdown("<h5 style='text-align: center;'>Compare popular/state-of-the-art models for tasks using sentence embeddings</h5>", unsafe_allow_html=True)
|
| 173 |
+
st.markdown(f"<div style='color: #4f4f4f; text-align: left'>Use cases for sentence embeddings<br/> • {use_case['1']}<br/> • {use_case['2']}<br/> • {use_case['3']}<br/><i>This app illustrates <b>'{curr_use_case}'</b> use case</i></div>", unsafe_allow_html=True)
|
| 174 |
st.markdown(f"<div style='color: #9f9f9f; text-align: right'>views: {get_views()}</div>", unsafe_allow_html=True)
|
| 175 |
|
| 176 |
|
|
|
|
| 179 |
|
| 180 |
with st.form('twc_form'):
|
| 181 |
|
| 182 |
+
step1_line = "Step 1. Upload text file(one sentence in a line) or choose an example text file below"
|
| 183 |
+
if (app_mode == DOC_RETRIEVAL):
|
| 184 |
+
step1_line += ". The first line is treated as the query"
|
| 185 |
+
uploaded_file = st.file_uploader(step1_line, type=".txt")
|
| 186 |
|
| 187 |
+
selected_file_index = st.selectbox(label=f'Example files ({len(example_file_names)})',
|
| 188 |
options = list(dict.keys(example_file_names)), index=0, key = "twc_file")
|
| 189 |
st.write("")
|
| 190 |
+
options_arr,markdown_str = construct_model_info_for_display(model_names)
|
| 191 |
selection_label = 'Step 2. Select Model'
|
| 192 |
selected_model = st.selectbox(label=selection_label,
|
| 193 |
options = options_arr, index=0, key = "twc_model")
|
| 194 |
st.write("")
|
| 195 |
+
if (app_mode == "similarity"):
|
| 196 |
+
main_index = st.number_input('Step 3. Enter index of sentence in file to make it the main sentence',value=1,min_value = 1)
|
| 197 |
+
else:
|
| 198 |
+
main_index = 1
|
| 199 |
st.write("")
|
| 200 |
submit_button = st.form_submit_button('Run')
|
| 201 |
|
|
|
|
| 208 |
st.session_state["file_name"] = uploaded_file.name
|
| 209 |
sentences = StringIO(uploaded_file.getvalue().decode("utf-8")).read()
|
| 210 |
else:
|
| 211 |
+
st.session_state["file_name"] = example_file_names[selected_file_index]["name"]
|
| 212 |
+
sentences = open(example_file_names[selected_file_index]["name"]).read()
|
| 213 |
sentences = sentences.split("\n")[:-1]
|
| 214 |
if (len(sentences) < main_index):
|
| 215 |
main_index = len(sentences)
|
|
|
|
| 219 |
sentences = sentences[:MAX_INPUT]
|
| 220 |
st.session_state["model_name"] = selected_model
|
| 221 |
st.session_state["main_index"] = main_index
|
| 222 |
+
results = run_test(model_names,selected_model,sentences,display_area,main_index - 1,(uploaded_file is not None))
|
| 223 |
display_area.empty()
|
| 224 |
with display_area.container():
|
| 225 |
device = 'GPU' if torch.cuda.is_available() else 'CPU'
|
| 226 |
response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for {len(sentences)} sentences"
|
| 227 |
+
display_results(sentences,main_index - 1,results,response_info,app_mode)
|
| 228 |
#st.json(results)
|
| 229 |
st.download_button(
|
| 230 |
label="Download results as json",
|
|
|
|
| 246 |
|
| 247 |
|
| 248 |
if __name__ == "__main__":
|
| 249 |
+
#print("comand line input:",len(sys.argv),str(sys.argv))
|
| 250 |
+
#app_main(sys.argv[1],sys.argv[2],sys.argv[3])
|
| 251 |
+
app_main("1","sim_app_examples.json","sim_app_models.json")
|
| 252 |
+
#app_main("2","doc_app_examples.json","doc_app_models.json")
|
| 253 |
|
sim_app_examples.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"Machine learning terms (phrases test)": {"name":"small_test.txt"},
|
| 3 |
+
"Customer feedback mixed with noise":{"name":"larger_test.txt"},
|
| 4 |
+
"Movie reviews": {"name":"imdb_sent.txt"}
|
| 5 |
+
}
|
sim_app_models.json
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
|
| 3 |
+
{ "name":"sentence-transformers/all-MiniLM-L6-v2",
|
| 4 |
+
"model":"sentence-transformers/all-MiniLM-L6-v2",
|
| 5 |
+
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
|
| 6 |
+
"orig_author_url":"https://github.com/UKPLab",
|
| 7 |
+
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 8 |
+
"sota_info": {
|
| 9 |
+
"task":"Over 3.8 million downloads from huggingface",
|
| 10 |
+
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2"
|
| 11 |
+
},
|
| 12 |
+
"paper_url":"https://arxiv.org/abs/1908.10084",
|
| 13 |
+
"mark":"True",
|
| 14 |
+
"class":"HFModel"},
|
| 15 |
+
{ "name":"sentence-transformers/paraphrase-MiniLM-L6-v2",
|
| 16 |
+
"model":"sentence-transformers/paraphrase-MiniLM-L6-v2",
|
| 17 |
+
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
|
| 18 |
+
"orig_author_url":"https://github.com/UKPLab",
|
| 19 |
+
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 20 |
+
"sota_info": {
|
| 21 |
+
"task":"Over 2 million downloads from huggingface",
|
| 22 |
+
"sota_link":"https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2"
|
| 23 |
+
},
|
| 24 |
+
"paper_url":"https://arxiv.org/abs/1908.10084",
|
| 25 |
+
"mark":"True",
|
| 26 |
+
"class":"HFModel"},
|
| 27 |
+
{ "name":"sentence-transformers/bert-base-nli-mean-tokens",
|
| 28 |
+
"model":"sentence-transformers/bert-base-nli-mean-tokens",
|
| 29 |
+
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
|
| 30 |
+
"orig_author_url":"https://github.com/UKPLab",
|
| 31 |
+
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 32 |
+
"sota_info": {
|
| 33 |
+
"task":"Over 700,000 downloads from huggingface",
|
| 34 |
+
"sota_link":"https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens"
|
| 35 |
+
},
|
| 36 |
+
"paper_url":"https://arxiv.org/abs/1908.10084",
|
| 37 |
+
"mark":"True",
|
| 38 |
+
"class":"HFModel"},
|
| 39 |
+
{ "name":"sentence-transformers/all-mpnet-base-v2",
|
| 40 |
+
"model":"sentence-transformers/all-mpnet-base-v2",
|
| 41 |
+
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
|
| 42 |
+
"orig_author_url":"https://github.com/UKPLab",
|
| 43 |
+
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 44 |
+
"sota_info": {
|
| 45 |
+
"task":"Over 500,000 downloads from huggingface",
|
| 46 |
+
"sota_link":"https://huggingface.co/sentence-transformers/all-mpnet-base-v2"
|
| 47 |
+
},
|
| 48 |
+
"paper_url":"https://arxiv.org/abs/1908.10084",
|
| 49 |
+
"mark":"True",
|
| 50 |
+
"class":"HFModel"},
|
| 51 |
+
{ "name":"sentence-transformers/all-MiniLM-L12-v2",
|
| 52 |
+
"model":"sentence-transformers/all-MiniLM-L12-v2",
|
| 53 |
+
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
|
| 54 |
+
"orig_author_url":"https://github.com/UKPLab",
|
| 55 |
+
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
| 56 |
+
"sota_info": {
|
| 57 |
+
"task":"Over 500,000 downloads from huggingface",
|
| 58 |
+
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2"
|
| 59 |
+
},
|
| 60 |
+
"paper_url":"https://arxiv.org/abs/1908.10084",
|
| 61 |
+
"mark":"True",
|
| 62 |
+
"class":"HFModel"},
|
| 63 |
+
|
| 64 |
+
{ "name":"SGPT-125M",
|
| 65 |
+
"model":"Muennighoff/SGPT-125M-weightedmean-nli-bitfit",
|
| 66 |
+
"fork_url":"https://github.com/taskswithcode/sgpt",
|
| 67 |
+
"orig_author_url":"https://github.com/Muennighoff",
|
| 68 |
+
"orig_author":"Niklas Muennighoff",
|
| 69 |
+
"sota_info": {
|
| 70 |
+
"task":"#1 in multiple information retrieval & search tasks(smaller variant)",
|
| 71 |
+
"sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic"
|
| 72 |
+
},
|
| 73 |
+
"paper_url":"https://arxiv.org/abs/2202.08904v5",
|
| 74 |
+
"mark":"True",
|
| 75 |
+
"class":"SGPTModel"},
|
| 76 |
+
{ "name":"SGPT-1.3B",
|
| 77 |
+
"model": "Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit",
|
| 78 |
+
"fork_url":"https://github.com/taskswithcode/sgpt",
|
| 79 |
+
"orig_author_url":"https://github.com/Muennighoff",
|
| 80 |
+
"orig_author":"Niklas Muennighoff",
|
| 81 |
+
"sota_info": {
|
| 82 |
+
"task":"#1 in multiple information retrieval & search tasks(smaller variant)",
|
| 83 |
+
"sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic"
|
| 84 |
+
},
|
| 85 |
+
"paper_url":"https://arxiv.org/abs/2202.08904v5",
|
| 86 |
+
"Note":"If this large model takes too long or fails to load , try this ",
|
| 87 |
+
"alt_url":"http://www.taskswithcode.com/sentence_similarity/",
|
| 88 |
+
"mark":"True",
|
| 89 |
+
"class":"SGPTModel"},
|
| 90 |
+
{ "name":"SGPT-5.8B",
|
| 91 |
+
"model": "Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit" ,
|
| 92 |
+
"fork_url":"https://github.com/taskswithcode/sgpt",
|
| 93 |
+
"orig_author_url":"https://github.com/Muennighoff",
|
| 94 |
+
"orig_author":"Niklas Muennighoff",
|
| 95 |
+
"Note":"If this large model takes too long or fails to load , try this ",
|
| 96 |
+
"alt_url":"http://www.taskswithcode.com/sentence_similarity/",
|
| 97 |
+
"sota_info": {
|
| 98 |
+
"task":"#1 in multiple information retrieval & search tasks",
|
| 99 |
+
"sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic"
|
| 100 |
+
},
|
| 101 |
+
"paper_url":"https://arxiv.org/abs/2202.08904v5",
|
| 102 |
+
"mark":"True",
|
| 103 |
+
"class":"SGPTModel"},
|
| 104 |
+
|
| 105 |
+
{ "name":"SIMCSE-large" ,
|
| 106 |
+
"model":"princeton-nlp/sup-simcse-roberta-large",
|
| 107 |
+
"fork_url":"https://github.com/taskswithcode/SimCSE",
|
| 108 |
+
"orig_author_url":"https://github.com/princeton-nlp",
|
| 109 |
+
"orig_author":"Princeton Natural Language Processing",
|
| 110 |
+
"Note":"If this large model takes too long or fails to load , try this ",
|
| 111 |
+
"alt_url":"http://www.taskswithcode.com/sentence_similarity/",
|
| 112 |
+
"sota_info": {
|
| 113 |
+
"task":"Within top 10 in multiple semantic textual similarity tasks",
|
| 114 |
+
"sota_link":"https://paperswithcode.com/paper/simcse-simple-contrastive-learning-of"
|
| 115 |
+
},
|
| 116 |
+
"paper_url":"https://arxiv.org/abs/2104.08821v4",
|
| 117 |
+
"mark":"True",
|
| 118 |
+
"class":"SimCSEModel","sota_link":"https://paperswithcode.com/sota/semantic-textual-similarity-on-sick"},
|
| 119 |
+
|
| 120 |
+
{ "name":"SIMCSE-base" ,
|
| 121 |
+
"model":"princeton-nlp/sup-simcse-roberta-base",
|
| 122 |
+
"fork_url":"https://github.com/taskswithcode/SimCSE",
|
| 123 |
+
"orig_author_url":"https://github.com/princeton-nlp",
|
| 124 |
+
"orig_author":"Princeton Natural Language Processing",
|
| 125 |
+
"sota_info": {
|
| 126 |
+
"task":"Within top 10 in multiple semantic textual similarity tasks(smaller variant)",
|
| 127 |
+
"sota_link":"https://paperswithcode.com/paper/simcse-simple-contrastive-learning-of"
|
| 128 |
+
},
|
| 129 |
+
"paper_url":"https://arxiv.org/abs/2104.08821v4",
|
| 130 |
+
"mark":"True",
|
| 131 |
+
"class":"SimCSEModel","sota_link":"https://paperswithcode.com/sota/semantic-textual-similarity-on-sick"}
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
]
|