File size: 3,459 Bytes
aea620e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from scipy.spatial.distance import cosine
import argparse
import json
import pdb
import torch
import torch.nn.functional as F
import numpy as np
import time
from collections import OrderedDict


class TWCClustering:
    def __init__(self):
        print("In Zscore  Clustering")

    def compute_matrix(self,embeddings):
        print("Computing similarity matrix ...)")
        embeddings= np.array(embeddings)
        start = time.time()
        vec_a = embeddings.T #vec_a shape (1024,)
        vec_a = vec_a/np.linalg.norm(vec_a,axis=0) #Norm is along axis 0 - rows
        vec_a = vec_a.T #vec_a shape becomes (,1024)
        similarity_matrix = np.inner(vec_a,vec_a)
        end = time.time()
        time_val = (end-start)*1000
        print(f"Similarity matrix computation complete. Time taken:{(time_val/(1000*60)):.2f}  minutes")
        return similarity_matrix
        
    def get_terms_above_threshold(self,matrix,embeddings,pivot_index,threshold):
        run_index = pivot_index
        picked_arr = []
        while (run_index < len(embeddings)):
            if (matrix[pivot_index][run_index] >= threshold):
                #picked_arr.append({"index":run_index,"val":matrix[pivot_index][run_index]})
                picked_arr.append({"index":run_index})
            run_index += 1
        return picked_arr

    def update_picked_dict(self,picked_dict,in_dict):
        for key in in_dict:
            picked_dict[key] = 1

    def find_pivot_subgraph(self,pivot_index,arr,matrix,threshold):
        center_index = pivot_index
        center_score = 0
        center_dict = {}
        for i in range(len(arr)):
            node_i_index = arr[i]["index"]
            running_score = 0
            temp_dict = {}
            for j in range(len(arr)):
                node_j_index = arr[j]["index"]
                cosine_dist = matrix[node_i_index][node_j_index]
                if (cosine_dist < threshold):
                    continue
                running_score += cosine_dist
                temp_dict[node_j_index] = cosine_dist
            if (running_score > center_score):
                center_index = node_i_index
                center_dict = temp_dict
                center_score = running_score
        sorted_d = OrderedDict(sorted(center_dict.items(), key=lambda kv: kv[1], reverse=True))
        return  {"pivot_index":center_index,"orig_index":pivot_index,"neighs":sorted_d}
         

    def cluster(self,output_file,texts,embeddings,threshold = 1.5):
        matrix = self.compute_matrix(embeddings)
        mean = np.mean(matrix)
        std = np.std(matrix)
        zscores = []
        inc = 0
        value = mean
        while (value < 1):
            zscores.append(round(value,2))
            inc += 1
            value = mean + inc*std
        print("In clustering:",round(std,2),zscores)
        cluster_dict = {}
        cluster_dict["clusters"] = []
        picked_dict = {}
    
        for i in range(len(embeddings)):
            if (i in picked_dict):
                continue
            zscore = mean + threshold*std
            arr = self.get_terms_above_threshold(matrix,embeddings,i,zscore)
            cluster_info = self.find_pivot_subgraph(i,arr,matrix,zscore)
            self.update_picked_dict(picked_dict,cluster_info["neighs"])
            cluster_dict["clusters"].append(cluster_info)
        cluster_dict["info"] ={"mean":mean,"std":std,"zscores":zscores}
        return cluster_dict