import gradio as gr from transformers import pipeline # Initialize the classifiers zero_shot_classifier = pipeline("zero-shot-classification", model="tasksource/ModernBERT-base-nli") nli_classifier = pipeline("text-classification", model="tasksource/ModernBERT-base-nli") def process_input(text_input, labels_or_premise, mode): if mode == "Zero-Shot Classification": labels = [label.strip() for label in labels_or_premise.split(',')] prediction = zero_shot_classifier(text_input, labels) results = {label: score for label, score in zip(prediction['labels'], prediction['scores'])} return results, '' else: # NLI mode prediction = nli_classifier([{"text": text_input, "text_pair": labels_or_premise}])[0] # Force showing all three labels results = { "entailment": prediction.get("score", 0) if prediction.get("label") == "entailment" else 0, "contradiction": prediction.get("score", 0) if prediction.get("label") == "contradiction" else 0, "neutral": prediction.get("score", 0) if prediction.get("label") == "neutral" else 0 } return results, '' def update_interface(mode): if mode == "Zero-Shot Classification": return gr.update(label="🏷️ Categories", placeholder="Enter comma-separated categories...") else: return gr.update(label="🔎 Hypothesis", placeholder="Enter a hypothesis to compare with the premise...") with gr.Blocks() as demo: gr.Markdown("# 🤖 ModernBERT Text Analysis") mode = gr.Radio( ["Zero-Shot Classification", "Natural Language Inference"], label="Select Mode", value="Zero-Shot Classification" ) with gr.Column(): text_input = gr.Textbox( label="✍️ Input Text", placeholder="Enter your text...", lines=3 ) labels_or_premise = gr.Textbox( label="🏷️ Categories", placeholder="Enter comma-separated categories...", lines=2 ) submit_btn = gr.Button("Submit") outputs = [ gr.Label(label="📊 Results"), gr.Markdown(label="📈 Analysis", visible=False) ] with gr.Column(variant="panel") as zero_shot_examples_panel: gr.Examples( examples=[ ["I need to buy groceries", "shopping, urgent tasks, leisure, philosophy"], ["The sun is very bright today", "weather, astronomy, complaints, poetry"], ["I love playing video games", "entertainment, sports, education, business"], ["The car won't start", "transportation, art, cooking, literature"], ["She wrote a beautiful poem", "creativity, finance, exercise, technology"] ], inputs=[text_input, labels_or_premise], label="Zero-Shot Classification Examples" ) with gr.Column(variant="panel") as nli_examples_panel: gr.Examples( examples=[ ["A man is sleeping on a couch", "The man is awake"], ["The restaurant is full of people", "The place is empty"], ["The child is playing with toys", "The kid is having fun"], ["It's raining outside", "The weather is wet"], ["The dog is barking at the mailman", "There is a cat"] ], inputs=[text_input, labels_or_premise], label="Natural Language Inference Examples" ) def update_visibility(mode): return ( gr.update(visible=(mode == "Zero-Shot Classification")), gr.update(visible=(mode == "Natural Language Inference")) ) mode.change( fn=update_interface, inputs=[mode], outputs=[labels_or_premise] ) mode.change( fn=update_visibility, inputs=[mode], outputs=[zero_shot_examples_panel, nli_examples_panel] ) submit_btn.click( fn=process_input, inputs=[text_input, labels_or_premise, mode], outputs=outputs ) if __name__ == "__main__": demo.launch()