tarrasyed19472007 commited on
Commit
b2b6d6f
·
verified ·
1 Parent(s): ba67e5b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -3
app.py CHANGED
@@ -1,7 +1,7 @@
1
  import streamlit as st
2
  from transformers import pipeline
3
 
4
- # Emotion classifier
5
  emotion_analyzer = pipeline("text-classification", model="distilbert-base-uncased")
6
 
7
  # Enhanced Suggestion Database with resources
@@ -67,8 +67,8 @@ def main():
67
  question_2 = st.text_input("What's something that is currently on your mind?")
68
  question_3 = st.text_input("Do you feel overwhelmed or calm right now?")
69
 
 
70
  if question_1 and question_2 and question_3:
71
- # Step 2: Analyze sentiment of responses
72
  text_to_analyze = f"{question_1} {question_2} {question_3}"
73
  analysis_result = emotion_analyzer(text_to_analyze)
74
  emotion = analysis_result[0]['label'] # Get the emotion from the analysis result
@@ -85,6 +85,8 @@ def main():
85
 
86
  # Step 3: Suggest activities, articles, and videos
87
  resources = suggest_activity({emotion: 1})
 
 
88
  st.write("Suggestions:")
89
  for suggestion in resources["suggestions"]:
90
  st.write(f"- {suggestion}")
@@ -96,7 +98,8 @@ def main():
96
  st.write("Videos:")
97
  for video in resources["videos"]:
98
  st.write(f"- [{video['title']}]({video['url']})")
 
 
99
 
100
  if __name__ == "__main__":
101
  main()
102
-
 
1
  import streamlit as st
2
  from transformers import pipeline
3
 
4
+ # Emotion classifier (use a pre-trained model from Hugging Face)
5
  emotion_analyzer = pipeline("text-classification", model="distilbert-base-uncased")
6
 
7
  # Enhanced Suggestion Database with resources
 
67
  question_2 = st.text_input("What's something that is currently on your mind?")
68
  question_3 = st.text_input("Do you feel overwhelmed or calm right now?")
69
 
70
+ # Step 2: Analyze sentiment of responses (only proceed if all questions are answered)
71
  if question_1 and question_2 and question_3:
 
72
  text_to_analyze = f"{question_1} {question_2} {question_3}"
73
  analysis_result = emotion_analyzer(text_to_analyze)
74
  emotion = analysis_result[0]['label'] # Get the emotion from the analysis result
 
85
 
86
  # Step 3: Suggest activities, articles, and videos
87
  resources = suggest_activity({emotion: 1})
88
+
89
+ # Display suggestions, articles, and videos
90
  st.write("Suggestions:")
91
  for suggestion in resources["suggestions"]:
92
  st.write(f"- {suggestion}")
 
98
  st.write("Videos:")
99
  for video in resources["videos"]:
100
  st.write(f"- [{video['title']}]({video['url']})")
101
+ else:
102
+ st.write("Please answer all three questions to receive suggestions.")
103
 
104
  if __name__ == "__main__":
105
  main()