Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,17 @@
|
|
1 |
-
# Import necessary libraries
|
2 |
import streamlit as st
|
3 |
from transformers import pipeline
|
4 |
import torch
|
5 |
from datasets import load_dataset
|
6 |
|
|
|
|
|
|
|
7 |
# Load the T5-based Emotion Classifier model
|
8 |
@st.cache_resource
|
9 |
def load_model():
|
10 |
try:
|
11 |
st.write("Loading the emotion analysis model...")
|
12 |
-
|
13 |
-
emotion_analyzer = pipeline("text-classification", model="suryakiran786/T5-emotion")
|
14 |
st.write("Model loaded successfully!")
|
15 |
return emotion_analyzer
|
16 |
except Exception as e:
|
@@ -20,24 +21,9 @@ def load_model():
|
|
20 |
# Initialize the model (with caching to prevent reloads)
|
21 |
emotion_analyzer = load_model()
|
22 |
|
23 |
-
# Load the dataset if needed for any additional logic (not used in emotion analysis directly, just for example)
|
24 |
-
@st.cache_data
|
25 |
-
def load_data():
|
26 |
-
try:
|
27 |
-
# For demonstration purposes, let's load a sentiment analysis dataset from Hugging Face
|
28 |
-
dataset = load_dataset("glue", "sst2")
|
29 |
-
st.write("Dataset loaded successfully!")
|
30 |
-
return dataset
|
31 |
-
except Exception as e:
|
32 |
-
st.write(f"Error loading dataset: {e}")
|
33 |
-
return None
|
34 |
-
|
35 |
-
# Load data (just to show usage, not used in emotion analysis directly)
|
36 |
-
dataset = load_data()
|
37 |
-
|
38 |
# Function to predict emotion for a single response
|
39 |
def predict_emotion_single(response):
|
40 |
-
if
|
41 |
return {"Error": "Emotion analyzer model not initialized. Please check model loading."}
|
42 |
try:
|
43 |
response = response.strip()
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
# Ensure proper usage of device (CPU or GPU)
|
7 |
+
device = 0 if torch.cuda.is_available() else -1 # Use GPU if available, else use CPU
|
8 |
+
|
9 |
# Load the T5-based Emotion Classifier model
|
10 |
@st.cache_resource
|
11 |
def load_model():
|
12 |
try:
|
13 |
st.write("Loading the emotion analysis model...")
|
14 |
+
emotion_analyzer = pipeline("text-classification", model="suryakiran786/T5-emotion", device=device)
|
|
|
15 |
st.write("Model loaded successfully!")
|
16 |
return emotion_analyzer
|
17 |
except Exception as e:
|
|
|
21 |
# Initialize the model (with caching to prevent reloads)
|
22 |
emotion_analyzer = load_model()
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# Function to predict emotion for a single response
|
25 |
def predict_emotion_single(response):
|
26 |
+
if emotion_analyzer is None:
|
27 |
return {"Error": "Emotion analyzer model not initialized. Please check model loading."}
|
28 |
try:
|
29 |
response = response.strip()
|