tarrasyed19472007 commited on
Commit
4b344bf
·
verified ·
1 Parent(s): d3f714e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -60
app.py CHANGED
@@ -1,6 +1,10 @@
1
  import streamlit as st
2
  import os
3
 
 
 
 
 
4
  # Suggestion Database
5
  suggestion_database = {
6
  "sadness": {
@@ -38,73 +42,50 @@ suggestion_database = {
38
  },
39
  }
40
 
41
- # Function to fetch relevant resources
42
  def get_relevant_resources(emotion):
43
- return suggestion_database.get(emotion, {"suggestions": [], "articles": [], "videos": []})
44
-
45
- # Debugging Model Initialization
46
- def load_emotion_model(model_path="path/to/model"):
47
- if not os.path.exists(model_path):
48
- st.error(f"Model file not found at {model_path}")
49
- return None
50
 
 
 
51
  try:
52
- # Replace with actual model loading logic
53
- model = "Dummy model loaded"
54
- st.success("Model loaded successfully!")
55
- return model
 
56
  except Exception as e:
57
- st.error(f"Error loading model: {e}")
58
  return None
59
 
60
- # Analyze User Input and Provide Suggestions
61
- def analyze_emotion(user_input, model):
62
- if model is None:
63
- return "neutral" # Default to neutral if model failed to load
64
- try:
65
- # Dummy emotion analysis (replace with model prediction logic)
66
- if "sad" in user_input.lower():
67
- return "sadness"
68
- elif "happy" in user_input.lower() or "joy" in user_input.lower():
69
- return "joy"
70
- else:
71
- return "neutral"
72
- except Exception as e:
73
- st.error(f"Error during emotion analysis: {e}")
74
- return "neutral"
75
-
76
- # Streamlit Interface
77
- def main():
78
- st.title("Emotion-Based Suggestions")
79
-
80
- # Load Model
81
- st.sidebar.title("Model Loader")
82
- model_path = st.sidebar.text_input("Model Path", "path/to/model")
83
- model = load_emotion_model(model_path)
84
-
85
- # User Input
86
- st.header("How are you feeling today?")
87
- user_input = st.text_input("Describe your mood in a few words:")
88
-
89
- if user_input:
90
- # Analyze Emotion
91
- emotion = analyze_emotion(user_input, model)
92
- st.subheader(f"Detected Emotion: {emotion.capitalize()}")
93
 
94
- # Fetch and Display Suggestions
95
- resources = get_relevant_resources(emotion)
96
- st.subheader("Suggestions for You:")
97
- for suggestion in resources["suggestions"]:
98
- st.write(f"- {suggestion}")
99
 
100
- st.subheader("Articles to Explore:")
101
- for article in resources["articles"]:
102
- st.write(f"- [{article['title']}]({article['url']})")
 
103
 
104
- st.subheader("Videos to Watch:")
105
- for video in resources["videos"]:
106
- st.write(f"- [{video['title']}]({video['url']})")
107
 
108
- # Run the App
109
- if __name__ == "__main__":
110
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
  import os
3
 
4
+ # Debugging Logger
5
+ def debug_log(message):
6
+ st.text(f"DEBUG: {message}")
7
+
8
  # Suggestion Database
9
  suggestion_database = {
10
  "sadness": {
 
42
  },
43
  }
44
 
45
+ # Function to Fetch Suggestions
46
  def get_relevant_resources(emotion):
47
+ return suggestion_database.get(emotion, suggestion_database["neutral"])
 
 
 
 
 
 
48
 
49
+ # Placeholder for Model Loading
50
+ def load_emotion_model(model_path):
51
  try:
52
+ # Placeholder logic: Replace this with actual model loading code
53
+ if not os.path.exists(model_path):
54
+ raise FileNotFoundError(f"Model file not found at {model_path}")
55
+ debug_log("Model loaded successfully!")
56
+ return "Emotion Model Placeholder"
57
  except Exception as e:
58
+ debug_log(str(e))
59
  return None
60
 
61
+ # Streamlit UI
62
+ st.title("Emotion-Based Suggestions")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
+ # Sidebar for Model Path
65
+ model_path = st.sidebar.text_input("Enter Model Path", "path/to/model")
 
 
 
66
 
67
+ # Load Model
68
+ emotion_model = load_emotion_model(model_path)
69
+ if emotion_model is None:
70
+ st.error("Model failed to load. Please check the path and try again.")
71
 
72
+ # Emotion Analysis Inputs
73
+ st.header("How are you feeling today?")
74
+ user_response = st.text_input("Describe your current emotion (e.g., happy, sad, neutral):", "neutral")
75
 
76
+ # Get Suggestions
77
+ if user_response:
78
+ resources = get_relevant_resources(user_response.lower())
79
+ st.subheader("Here are some suggestions for you:")
80
+
81
+ st.write("**Activities:**")
82
+ for suggestion in resources["suggestions"]:
83
+ st.write(f"- {suggestion}")
84
+
85
+ st.write("**Articles:**")
86
+ for article in resources["articles"]:
87
+ st.write(f"- [{article['title']}]({article['url']})")
88
+
89
+ st.write("**Videos:**")
90
+ for video in resources["videos"]:
91
+ st.write(f"- [{video['title']}]({video['url']})")