tarrasyed19472007's picture
Update app.py
3e041fe verified
raw
history blame
2.96 kB
import os
import requests
import streamlit as st
from dotenv import load_dotenv
# Load environment variables from the .env file
load_dotenv()
# Get the Gemini API key from the .env file
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
if GEMINI_API_KEY is None:
st.error("API key not found! Please set the GEMINI_API_KEY in your .env file.")
st.stop()
# Define the 3 questions for mood analysis
questions = [
"How are you feeling today in one word?",
"What's currently on your mind?",
"Do you feel calm or overwhelmed right now?",
]
# Function to query the Gemini API
def query_gemini_api(user_answers):
# Correct Gemini API endpoint
url = f"https://generativelanguage.googleapis.com/v1beta/models/text-bison-001:generateText?key={GEMINI_API_KEY}"
headers = {'Content-Type': 'application/json'}
# Combine the user answers into a single input text
input_text = " ".join(user_answers)
# Payload for the API
payload = {
"prompt": {
"text": f"Analyze the following mood based on these inputs: {input_text}. Provide suggestions to improve the mood."
},
"temperature": 0.7,
"maxOutputTokens": 256,
"topP": 0.8,
"topK": 40
}
try:
# Send the POST request
response = requests.post(url, headers=headers, json=payload)
# Check if the response is successful
if response.status_code == 200:
result = response.json()
# Extract the generated text from the response
generated_text = result.get("candidates", [{}])[0].get("output", "")
return generated_text
else:
st.error(f"API Error {response.status_code}: {response.text}")
return None
except requests.exceptions.RequestException as e:
st.error(f"An error occurred: {e}")
return None
# Streamlit app for collecting answers
def main():
st.title("Mood Analysis and Suggestions")
st.write("Answer the following 3 questions to help us understand your mood:")
# Collect responses from the user
responses = []
for i, question in enumerate(questions):
response = st.text_input(f"{i+1}. {question}")
if response:
responses.append(response)
# If all 3 responses are collected, send them to Gemini for analysis
if len(responses) == len(questions):
st.write("Processing your answers...")
# Query the Gemini API
generated_text = query_gemini_api(responses)
if generated_text:
# Display the generated mood analysis and recommendations
st.write("### Mood Analysis and Suggestions:")
st.write(generated_text)
else:
st.warning("Could not generate mood analysis. Please try again later.")
else:
st.info("Please answer all 3 questions to receive suggestions.")
if __name__ == "__main__":
main()