File size: 2,758 Bytes
4c0c8ad
bb770b6
a48d950
 
 
bb770b6
a48d950
 
 
 
 
 
596e12a
9d6b1a8
4c0c8ad
9d6b1a8
 
 
4c0c8ad
 
a48d950
 
 
 
 
 
 
 
 
 
9d6b1a8
 
a48d950
 
 
 
 
 
 
 
 
9d6b1a8
 
 
 
 
 
 
 
 
 
 
 
 
 
a48d950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d6b1a8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import random
import streamlit as st
import requests
from dotenv import load_dotenv
import os

# Load environment variables from .env file
load_dotenv()

# Fetch the API key from the environment
API_KEY = os.getenv("GEMINI_API_KEY")
GEMINI_API_URL = "https://gemini-api-url.com"  # Replace with the actual URL for Gemini API

# Define the questions for mood analysis
questions = [
    "How are you feeling today in one word?",
    "What's currently on your mind?",
    "Do you feel calm or overwhelmed right now?",
]

# Function to call Gemini API and get recommendations
def get_recommendations(user_responses):
    # Create the payload with user responses
    data = {
        "responses": user_responses,
    }

    headers = {
        "Authorization": f"Bearer {API_KEY}",
        "Content-Type": "application/json"
    }

    # Call the Gemini API
    response = requests.post(GEMINI_API_URL, json=data, headers=headers)

    if response.status_code == 200:
        return response.json()  # Return the JSON response containing suggestions and mood analysis
    else:
        st.error(f"Error in calling Gemini API: {response.status_code}")
        return {}

# Streamlit app
def main():
    st.title("Mood Analysis and Suggestions")
    st.write("Answer the following 3 questions to help us understand your mood:")

    # Collect responses
    responses = []
    for i, question in enumerate(questions):
        response = st.text_input(f"{i+1}. {question}")
        if response:
            responses.append(response)

    # Analyze responses if all questions are answered
    if len(responses) == len(questions):
        # Send the responses to the Gemini API for analysis and suggestions
        analysis_result = get_recommendations(responses)

        if analysis_result:
            # Extract mood and recommendations from the response
            mood = analysis_result.get("mood", "NEUTRAL")
            suggestions = analysis_result.get("suggestions", [])
            articles = analysis_result.get("articles", [])
            videos = analysis_result.get("videos", [])

            st.write(f"Detected Mood: {mood}")

            # Display suggestions
            st.write("### Suggestions")
            for suggestion in suggestions:
                st.write(f"- {suggestion}")

            # Display articles
            st.write("### Articles")
            for article in articles:
                st.write(f"- [{article['title']}]({article['url']})")

            # Display videos
            st.write("### Videos")
            for video in videos:
                st.write(f"- [{video['title']}]({video['url']})")
    else:
        st.write("Please answer all 3 questions to receive suggestions.")

if __name__ == "__main__":
    main()