File size: 4,128 Bytes
72fce14
d3f714e
dfe4a9e
2da24f4
bebf7e5
 
d5c2a19
bebf7e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f72fbb
bebf7e5
 
 
5f72fbb
2da24f4
 
bebf7e5
 
d5c2a19
bebf7e5
d5c2a19
 
 
 
 
 
 
33842b1
d3f714e
d5c2a19
 
 
 
d3f714e
d5c2a19
d3f714e
 
d5c2a19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import streamlit as st
import os

# Suggestion Database
suggestion_database = {
    "sadness": {
        "suggestions": ["Try a guided meditation", "Take a walk in nature", "Connect with a friend"],
        "articles": [
            {"title": "Overcoming Sadness", "url": "https://example.com/sadness1"},
            {"title": "Understanding Depression", "url": "https://example.com/sadness2"},
        ],
        "videos": [
            {"title": "Mindfulness for Sadness", "url": "https://www.youtube.com/watch?v=sadnessvideo1"},
            {"title": "Coping with Grief", "url": "https://www.youtube.com/watch?v=sadnessvideo2"},
        ],
    },
    "joy": {
        "suggestions": ["Practice gratitude", "Engage in a hobby", "Spend time with loved ones"],
        "articles": [
            {"title": "The Benefits of Joy", "url": "https://example.com/joy1"},
            {"title": "Maintaining Positive Emotions", "url": "https://example.com/joy2"},
        ],
        "videos": [
            {"title": "Boosting Your Happiness", "url": "https://www.youtube.com/watch?v=joyvideo1"},
            {"title": "Practicing Gratitude", "url": "https://www.youtube.com/watch?v=joyvideo2"},
        ],
    },
    "neutral": {
        "suggestions": ["Take a break", "Engage in a relaxing activity", "Spend time in nature"],
        "articles": [
            {"title": "Importance of Self-Care", "url": "https://example.com/selfcare1"},
            {"title": "Stress Management Techniques", "url": "https://example.com/stress1"},
        ],
        "videos": [
            {"title": "Relaxation Techniques", "url": "https://www.youtube.com/watch?v=relaxvideo1"},
            {"title": "Mindfulness Exercises", "url": "https://www.youtube.com/watch?v=mindfulnessvideo1"},
        ],
    },
}

# Function to fetch relevant resources
def get_relevant_resources(emotion):
    return suggestion_database.get(emotion, {"suggestions": [], "articles": [], "videos": []})

# Debugging Model Initialization
def load_emotion_model(model_path="path/to/model"):
    if not os.path.exists(model_path):
        st.error(f"Model file not found at {model_path}")
        return None

    try:
        # Replace with actual model loading logic
        model = "Dummy model loaded"
        st.success("Model loaded successfully!")
        return model
    except Exception as e:
        st.error(f"Error loading model: {e}")
        return None

# Analyze User Input and Provide Suggestions
def analyze_emotion(user_input, model):
    if model is None:
        return "neutral"  # Default to neutral if model failed to load
    try:
        # Dummy emotion analysis (replace with model prediction logic)
        if "sad" in user_input.lower():
            return "sadness"
        elif "happy" in user_input.lower() or "joy" in user_input.lower():
            return "joy"
        else:
            return "neutral"
    except Exception as e:
        st.error(f"Error during emotion analysis: {e}")
        return "neutral"

# Streamlit Interface
def main():
    st.title("Emotion-Based Suggestions")

    # Load Model
    st.sidebar.title("Model Loader")
    model_path = st.sidebar.text_input("Model Path", "path/to/model")
    model = load_emotion_model(model_path)

    # User Input
    st.header("How are you feeling today?")
    user_input = st.text_input("Describe your mood in a few words:")

    if user_input:
        # Analyze Emotion
        emotion = analyze_emotion(user_input, model)
        st.subheader(f"Detected Emotion: {emotion.capitalize()}")

        # Fetch and Display Suggestions
        resources = get_relevant_resources(emotion)
        st.subheader("Suggestions for You:")
        for suggestion in resources["suggestions"]:
            st.write(f"- {suggestion}")

        st.subheader("Articles to Explore:")
        for article in resources["articles"]:
            st.write(f"- [{article['title']}]({article['url']})")

        st.subheader("Videos to Watch:")
        for video in resources["videos"]:
            st.write(f"- [{video['title']}]({video['url']})")

# Run the App
if __name__ == "__main__":
    main()