Spaces:
Sleeping
Sleeping
File size: 3,079 Bytes
78300fa a48d950 ac877e3 78300fa 596e12a ac877e3 4c0c8ad 9d6b1a8 4c0c8ad ac877e3 590695e ac877e3 590695e ac877e3 590695e ac877e3 590695e a48d950 ac877e3 590695e ac877e3 590695e ac877e3 590695e 8fcb8ea 590695e ac877e3 590695e ac877e3 590695e ac877e3 9d6b1a8 ac877e3 9d6b1a8 ac877e3 9d6b1a8 ac877e3 9d6b1a8 ac877e3 8fcb8ea 590695e a48d950 590695e ac877e3 590695e 9d6b1a8 590695e 9d6b1a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import os
import requests
import streamlit as st
from dotenv import load_dotenv
# Load environment variables from the .env file
load_dotenv()
# Get the Gemini API key from the .env file
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
if GEMINI_API_KEY is None:
st.error("API key not found! Please set the GEMINI_API_KEY in your .env file.")
st.stop()
# Define the 3 questions for mood analysis
questions = [
"How are you feeling today in one word?",
"What's currently on your mind?",
"Do you feel calm or overwhelmed right now?",
]
# Function to query the Gemini API
def query_gemini_api(user_answers):
# Correct Gemini API endpoint (based on Google's Generative AI documentation)
url = f"https://generativelanguage.googleapis.com/v1beta2/models/text-bison-001:generateText?key={GEMINI_API_KEY}"
headers = {'Content-Type': 'application/json'}
# Combine the user answers into a single input text
input_text = " ".join(user_answers)
# Payload for the API
payload = {
"prompt": {
"text": f"Analyze the following mood based on these inputs: {input_text}. Provide suggestions to improve the mood."
},
"temperature": 0.7,
"candidateCount": 1
}
try:
# Send the POST request
response = requests.post(url, headers=headers, json=payload)
# Check if the response is successful
if response.status_code == 200:
result = response.json()
# Extract the generated text from the response
candidates = result.get("candidates", [])
if candidates:
generated_text = candidates[0].get("output", "")
return generated_text
else:
return None
else:
st.error(f"API Error {response.status_code}: {response.text}")
return None
except requests.exceptions.RequestException as e:
st.error(f"An error occurred: {e}")
return None
# Streamlit app for collecting answers
def main():
st.title("Mood Analysis and Suggestions")
st.write("Answer the following 3 questions to help us understand your mood:")
# Collect responses from the user
responses = []
for i, question in enumerate(questions):
response = st.text_input(f"{i+1}. {question}")
if response:
responses.append(response)
# If all 3 responses are collected, send them to Gemini for analysis
if len(responses) == len(questions):
st.write("Processing your answers...")
# Query the Gemini API
generated_text = query_gemini_api(responses)
if generated_text:
# Display the generated mood analysis and recommendations
st.write("### Mood Analysis and Suggestions:")
st.write(generated_text)
else:
st.warning("Could not generate mood analysis. Please try again later.")
else:
st.info("Please answer all 3 questions to receive suggestions.")
if __name__ == "__main__":
main()
|