File size: 3,079 Bytes
78300fa
a48d950
ac877e3
78300fa
 
 
 
 
 
 
 
 
 
 
596e12a
ac877e3
4c0c8ad
9d6b1a8
 
 
4c0c8ad
 
ac877e3
 
590695e
 
 
ac877e3
 
590695e
 
ac877e3
590695e
ac877e3
590695e
 
 
 
 
a48d950
 
ac877e3
590695e
ac877e3
 
590695e
ac877e3
 
590695e
 
 
 
 
 
8fcb8ea
590695e
ac877e3
590695e
 
ac877e3
590695e
 
ac877e3
 
9d6b1a8
 
ac877e3
9d6b1a8
 
ac877e3
9d6b1a8
 
 
 
 
 
ac877e3
9d6b1a8
ac877e3
8fcb8ea
590695e
 
a48d950
590695e
 
 
 
ac877e3
590695e
9d6b1a8
590695e
9d6b1a8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import os
import requests
import streamlit as st
from dotenv import load_dotenv

# Load environment variables from the .env file
load_dotenv()

# Get the Gemini API key from the .env file
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")

if GEMINI_API_KEY is None:
    st.error("API key not found! Please set the GEMINI_API_KEY in your .env file.")
    st.stop()

# Define the 3 questions for mood analysis
questions = [
    "How are you feeling today in one word?",
    "What's currently on your mind?",
    "Do you feel calm or overwhelmed right now?",
]

# Function to query the Gemini API
def query_gemini_api(user_answers):
    # Correct Gemini API endpoint (based on Google's Generative AI documentation)
    url = f"https://generativelanguage.googleapis.com/v1beta2/models/text-bison-001:generateText?key={GEMINI_API_KEY}"
    
    headers = {'Content-Type': 'application/json'}
    
    # Combine the user answers into a single input text
    input_text = " ".join(user_answers)
    
    # Payload for the API
    payload = {
        "prompt": {
            "text": f"Analyze the following mood based on these inputs: {input_text}. Provide suggestions to improve the mood."
        },
        "temperature": 0.7,
        "candidateCount": 1
    }

    try:
        # Send the POST request
        response = requests.post(url, headers=headers, json=payload)

        # Check if the response is successful
        if response.status_code == 200:
            result = response.json()
            
            # Extract the generated text from the response
            candidates = result.get("candidates", [])
            if candidates:
                generated_text = candidates[0].get("output", "")
                return generated_text
            else:
                return None
        else:
            st.error(f"API Error {response.status_code}: {response.text}")
            return None
    except requests.exceptions.RequestException as e:
        st.error(f"An error occurred: {e}")
        return None

# Streamlit app for collecting answers
def main():
    st.title("Mood Analysis and Suggestions")

    st.write("Answer the following 3 questions to help us understand your mood:")

    # Collect responses from the user
    responses = []
    for i, question in enumerate(questions):
        response = st.text_input(f"{i+1}. {question}")
        if response:
            responses.append(response)

    # If all 3 responses are collected, send them to Gemini for analysis
    if len(responses) == len(questions):
        st.write("Processing your answers...")

        # Query the Gemini API
        generated_text = query_gemini_api(responses)

        if generated_text:
            # Display the generated mood analysis and recommendations
            st.write("### Mood Analysis and Suggestions:")
            st.write(generated_text)
        else:
            st.warning("Could not generate mood analysis. Please try again later.")
    else:
        st.info("Please answer all 3 questions to receive suggestions.")

if __name__ == "__main__":
    main()