import gradio as gr import numpy as np import torch model = torch.hub.load('ultralytics/yolov5', 'custom', path='last2.pt', force_reload=True) from transformers import AutoModelForCausalLM, AutoTokenizer llm = AutoModelForCausalLM.from_pretrained("microsoft/phi-1_5", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5", trust_remote_code=True) def give(results): prompt="" if int(results.pred[0][-1][-1].numpy())==0: prompt="Suggest a statement for praising my focus." elif int(results.pred[0][-1][-1].numpy())==1: prompt="Suggest an exercise for staying awake." else: prompt="Suggest an exercise for staying alert." inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False) outputs = llm.generate(**inputs, max_length=30) return tokenizer.batch_decode(outputs)[0] def detect(im): results = model(im) return [results,give(results)] #return [np.squeeze(results.render())] #return [im] demo = gr.Interface( detect, [gr.Image(source="webcam", tool=None)], ["text","text"], ) if __name__ == "__main__": demo.launch(share=True)