Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -25,23 +25,21 @@ MAX_MAX_NEW_TOKENS = 4096
|
|
| 25 |
DEFAULT_MAX_NEW_TOKENS = 4096
|
| 26 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 27 |
|
| 28 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 29 |
-
|
| 30 |
# quantization_config = BitsAndBytesConfig(
|
| 31 |
# load_in_4bit=True,
|
| 32 |
# bnb_4bit_compute_dtype=torch.bfloat16,
|
| 33 |
# bnb_4bit_use_double_quant=True,
|
| 34 |
# bnb_4bit_quant_type= "nf4")
|
| 35 |
-
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
| 36 |
|
| 37 |
model_id = "CardinalOperations/ORLM-LLaMA-3-8B"
|
| 38 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
|
| 39 |
model = AutoModelForCausalLM.from_pretrained(
|
| 40 |
model_id,
|
| 41 |
device_map="auto",
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
quantization_config=quantization_config,
|
| 45 |
)
|
| 46 |
model.eval()
|
| 47 |
|
|
@@ -63,7 +61,7 @@ def generate(
|
|
| 63 |
input_ids = tokenized_example.input_ids
|
| 64 |
input_ids = input_ids.to(model.device)
|
| 65 |
|
| 66 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=
|
| 67 |
generate_kwargs = dict(
|
| 68 |
{"input_ids": input_ids},
|
| 69 |
streamer=streamer,
|
|
|
|
| 25 |
DEFAULT_MAX_NEW_TOKENS = 4096
|
| 26 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 27 |
|
|
|
|
|
|
|
| 28 |
# quantization_config = BitsAndBytesConfig(
|
| 29 |
# load_in_4bit=True,
|
| 30 |
# bnb_4bit_compute_dtype=torch.bfloat16,
|
| 31 |
# bnb_4bit_use_double_quant=True,
|
| 32 |
# bnb_4bit_quant_type= "nf4")
|
| 33 |
+
# quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
| 34 |
|
| 35 |
model_id = "CardinalOperations/ORLM-LLaMA-3-8B"
|
| 36 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
|
| 37 |
model = AutoModelForCausalLM.from_pretrained(
|
| 38 |
model_id,
|
| 39 |
device_map="auto",
|
| 40 |
+
torch_dtype=torch.bfloat16,
|
| 41 |
+
attn_implementation="flash_attention_2",
|
| 42 |
+
# quantization_config=quantization_config,
|
| 43 |
)
|
| 44 |
model.eval()
|
| 45 |
|
|
|
|
| 61 |
input_ids = tokenized_example.input_ids
|
| 62 |
input_ids = input_ids.to(model.device)
|
| 63 |
|
| 64 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=50.0, skip_prompt=True, skip_special_tokens=True)
|
| 65 |
generate_kwargs = dict(
|
| 66 |
{"input_ids": input_ids},
|
| 67 |
streamer=streamer,
|