#!/usr/bin/env python3 # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from concurrent.futures import ThreadPoolExecutor import onnxruntime import torch import torchaudio import torchaudio.compliance.kaldi as kaldi from tqdm import tqdm def extract_embedding(input_list): utt, wav_file, ort_session = input_list audio, sample_rate = torchaudio.load(wav_file) if sample_rate != 16000: audio = torchaudio.transforms.Resample( orig_freq=sample_rate, new_freq=16000 )(audio) feat = kaldi.fbank(audio, num_mel_bins=80, dither=0, sample_frequency=16000) feat = feat - feat.mean(dim=0, keepdim=True) embedding = ( ort_session.run( None, { ort_session.get_inputs()[0] .name: feat.unsqueeze(dim=0) .cpu() .numpy() }, )[0] .flatten() .tolist() ) return (utt, embedding) def main(args): utt2wav, utt2spk = {}, {} with open("{}/wav.scp".format(args.dir)) as f: for l in f: l = l.replace("\n", "").split() utt2wav[l[0]] = l[1] with open("{}/utt2spk".format(args.dir)) as f: for l in f: l = l.replace("\n", "").split() utt2spk[l[0]] = l[1] assert os.path.exists(args.onnx_path), "onnx_path not exists" option = onnxruntime.SessionOptions() option.graph_optimization_level = ( onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL ) option.intra_op_num_threads = 1 providers = ["CPUExecutionProvider"] ort_session = onnxruntime.InferenceSession( args.onnx_path, sess_options=option, providers=providers ) inputs = [ (utt, utt2wav[utt], ort_session) for utt in tqdm(utt2wav.keys(), desc="Load data") ] with ThreadPoolExecutor(max_workers=args.num_thread) as executor: results = list( tqdm( executor.map(extract_embedding, inputs), total=len(inputs), desc="Process data: ", ) ) utt2embedding, spk2embedding = {}, {} for utt, embedding in results: utt2embedding[utt] = embedding spk = utt2spk[utt] if spk not in spk2embedding: spk2embedding[spk] = [] spk2embedding[spk].append(embedding) for k, v in spk2embedding.items(): spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist() torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir)) torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--dir", type=str) parser.add_argument("--onnx_path", type=str) parser.add_argument("--num_thread", type=int, default=8) args = parser.parse_args() main(args)