Spaces:
Configuration error
Configuration error
add 25hz text tokenizer
Browse files
cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
cosyvoice/tokenizer/tokenizer.py
ADDED
|
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
import os
|
| 3 |
+
import string
|
| 4 |
+
from dataclasses import dataclass, field
|
| 5 |
+
from functools import cached_property, lru_cache
|
| 6 |
+
from typing import Dict, List, Optional, Tuple
|
| 7 |
+
|
| 8 |
+
import tiktoken
|
| 9 |
+
|
| 10 |
+
LANGUAGES = {
|
| 11 |
+
"en": "english",
|
| 12 |
+
"zh": "chinese",
|
| 13 |
+
"de": "german",
|
| 14 |
+
"es": "spanish",
|
| 15 |
+
"ru": "russian",
|
| 16 |
+
"ko": "korean",
|
| 17 |
+
"fr": "french",
|
| 18 |
+
"ja": "japanese",
|
| 19 |
+
"pt": "portuguese",
|
| 20 |
+
"tr": "turkish",
|
| 21 |
+
"pl": "polish",
|
| 22 |
+
"ca": "catalan",
|
| 23 |
+
"nl": "dutch",
|
| 24 |
+
"ar": "arabic",
|
| 25 |
+
"sv": "swedish",
|
| 26 |
+
"it": "italian",
|
| 27 |
+
"id": "indonesian",
|
| 28 |
+
"hi": "hindi",
|
| 29 |
+
"fi": "finnish",
|
| 30 |
+
"vi": "vietnamese",
|
| 31 |
+
"he": "hebrew",
|
| 32 |
+
"uk": "ukrainian",
|
| 33 |
+
"el": "greek",
|
| 34 |
+
"ms": "malay",
|
| 35 |
+
"cs": "czech",
|
| 36 |
+
"ro": "romanian",
|
| 37 |
+
"da": "danish",
|
| 38 |
+
"hu": "hungarian",
|
| 39 |
+
"ta": "tamil",
|
| 40 |
+
"no": "norwegian",
|
| 41 |
+
"th": "thai",
|
| 42 |
+
"ur": "urdu",
|
| 43 |
+
"hr": "croatian",
|
| 44 |
+
"bg": "bulgarian",
|
| 45 |
+
"lt": "lithuanian",
|
| 46 |
+
"la": "latin",
|
| 47 |
+
"mi": "maori",
|
| 48 |
+
"ml": "malayalam",
|
| 49 |
+
"cy": "welsh",
|
| 50 |
+
"sk": "slovak",
|
| 51 |
+
"te": "telugu",
|
| 52 |
+
"fa": "persian",
|
| 53 |
+
"lv": "latvian",
|
| 54 |
+
"bn": "bengali",
|
| 55 |
+
"sr": "serbian",
|
| 56 |
+
"az": "azerbaijani",
|
| 57 |
+
"sl": "slovenian",
|
| 58 |
+
"kn": "kannada",
|
| 59 |
+
"et": "estonian",
|
| 60 |
+
"mk": "macedonian",
|
| 61 |
+
"br": "breton",
|
| 62 |
+
"eu": "basque",
|
| 63 |
+
"is": "icelandic",
|
| 64 |
+
"hy": "armenian",
|
| 65 |
+
"ne": "nepali",
|
| 66 |
+
"mn": "mongolian",
|
| 67 |
+
"bs": "bosnian",
|
| 68 |
+
"kk": "kazakh",
|
| 69 |
+
"sq": "albanian",
|
| 70 |
+
"sw": "swahili",
|
| 71 |
+
"gl": "galician",
|
| 72 |
+
"mr": "marathi",
|
| 73 |
+
"pa": "punjabi",
|
| 74 |
+
"si": "sinhala",
|
| 75 |
+
"km": "khmer",
|
| 76 |
+
"sn": "shona",
|
| 77 |
+
"yo": "yoruba",
|
| 78 |
+
"so": "somali",
|
| 79 |
+
"af": "afrikaans",
|
| 80 |
+
"oc": "occitan",
|
| 81 |
+
"ka": "georgian",
|
| 82 |
+
"be": "belarusian",
|
| 83 |
+
"tg": "tajik",
|
| 84 |
+
"sd": "sindhi",
|
| 85 |
+
"gu": "gujarati",
|
| 86 |
+
"am": "amharic",
|
| 87 |
+
"yi": "yiddish",
|
| 88 |
+
"lo": "lao",
|
| 89 |
+
"uz": "uzbek",
|
| 90 |
+
"fo": "faroese",
|
| 91 |
+
"ht": "haitian creole",
|
| 92 |
+
"ps": "pashto",
|
| 93 |
+
"tk": "turkmen",
|
| 94 |
+
"nn": "nynorsk",
|
| 95 |
+
"mt": "maltese",
|
| 96 |
+
"sa": "sanskrit",
|
| 97 |
+
"lb": "luxembourgish",
|
| 98 |
+
"my": "myanmar",
|
| 99 |
+
"bo": "tibetan",
|
| 100 |
+
"tl": "tagalog",
|
| 101 |
+
"mg": "malagasy",
|
| 102 |
+
"as": "assamese",
|
| 103 |
+
"tt": "tatar",
|
| 104 |
+
"haw": "hawaiian",
|
| 105 |
+
"ln": "lingala",
|
| 106 |
+
"ha": "hausa",
|
| 107 |
+
"ba": "bashkir",
|
| 108 |
+
"jw": "javanese",
|
| 109 |
+
"su": "sundanese",
|
| 110 |
+
"yue": "cantonese",
|
| 111 |
+
"minnan": "minnan",
|
| 112 |
+
"wuyu": "wuyu",
|
| 113 |
+
"dialect": "dialect",
|
| 114 |
+
"zh/en": "zh/en",
|
| 115 |
+
"en/zh": "en/zh",
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
+
# language code lookup by name, with a few language aliases
|
| 119 |
+
TO_LANGUAGE_CODE = {
|
| 120 |
+
**{language: code for code, language in LANGUAGES.items()},
|
| 121 |
+
"burmese": "my",
|
| 122 |
+
"valencian": "ca",
|
| 123 |
+
"flemish": "nl",
|
| 124 |
+
"haitian": "ht",
|
| 125 |
+
"letzeburgesch": "lb",
|
| 126 |
+
"pushto": "ps",
|
| 127 |
+
"panjabi": "pa",
|
| 128 |
+
"moldavian": "ro",
|
| 129 |
+
"moldovan": "ro",
|
| 130 |
+
"sinhalese": "si",
|
| 131 |
+
"castilian": "es",
|
| 132 |
+
"mandarin": "zh",
|
| 133 |
+
}
|
| 134 |
+
|
| 135 |
+
AUDIO_EVENT = {
|
| 136 |
+
"ASR": "ASR",
|
| 137 |
+
"AED": "AED",
|
| 138 |
+
"SER": "SER",
|
| 139 |
+
"Speech": "Speech",
|
| 140 |
+
"/Speech": "/Speech",
|
| 141 |
+
"BGM": "BGM",
|
| 142 |
+
"/BGM": "/BGM",
|
| 143 |
+
"Laughter": "Laughter",
|
| 144 |
+
"/Laughter": "/Laughter",
|
| 145 |
+
"Applause": "Applause",
|
| 146 |
+
"/Applause": "/Applause",
|
| 147 |
+
}
|
| 148 |
+
|
| 149 |
+
EMOTION = {
|
| 150 |
+
"HAPPY": "HAPPY",
|
| 151 |
+
"SAD": "SAD",
|
| 152 |
+
"ANGRY": "ANGRY",
|
| 153 |
+
"NEUTRAL": "NEUTRAL",
|
| 154 |
+
}
|
| 155 |
+
|
| 156 |
+
TTS_Vocal_Token = {
|
| 157 |
+
"TTS/B": "TTS/B",
|
| 158 |
+
"TTS/O": "TTS/O",
|
| 159 |
+
"TTS/Q": "TTS/Q",
|
| 160 |
+
"TTS/A": "TTS/A",
|
| 161 |
+
"TTS/CO": "TTS/CO",
|
| 162 |
+
"TTS/CL": "TTS/CL",
|
| 163 |
+
"TTS/H": "TTS/H",
|
| 164 |
+
**{f"TTS/SP{i:02d}": f"TTS/SP{i:02d}" for i in range(1, 14)}
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
@dataclass
|
| 169 |
+
class Tokenizer:
|
| 170 |
+
"""A thin wrapper around `tiktoken` providing quick access to special tokens"""
|
| 171 |
+
|
| 172 |
+
encoding: tiktoken.Encoding
|
| 173 |
+
num_languages: int
|
| 174 |
+
language: Optional[str] = None
|
| 175 |
+
task: Optional[str] = None
|
| 176 |
+
sot_sequence: Tuple[int] = ()
|
| 177 |
+
special_tokens: Dict[str, int] = field(default_factory=dict)
|
| 178 |
+
|
| 179 |
+
def __post_init__(self):
|
| 180 |
+
for special in self.encoding.special_tokens_set:
|
| 181 |
+
special_token = self.encoding.encode_single_token(special)
|
| 182 |
+
self.special_tokens[special] = special_token
|
| 183 |
+
|
| 184 |
+
sot: int = self.special_tokens["<|startoftranscript|>"]
|
| 185 |
+
translate: int = self.special_tokens["<|translate|>"]
|
| 186 |
+
transcribe: int = self.special_tokens["<|transcribe|>"]
|
| 187 |
+
|
| 188 |
+
langs = tuple(LANGUAGES.keys())[: self.num_languages]
|
| 189 |
+
sot_sequence = [sot]
|
| 190 |
+
if self.language is not None:
|
| 191 |
+
sot_sequence.append(sot + 1 + langs.index(self.language))
|
| 192 |
+
if self.task is not None:
|
| 193 |
+
task_token: int = transcribe if self.task == "transcribe" else translate
|
| 194 |
+
sot_sequence.append(task_token)
|
| 195 |
+
|
| 196 |
+
self.sot_sequence = tuple(sot_sequence)
|
| 197 |
+
|
| 198 |
+
def encode(self, text, **kwargs):
|
| 199 |
+
return self.encoding.encode(text, **kwargs)
|
| 200 |
+
|
| 201 |
+
def decode(self, token_ids: List[int], **kwargs) -> str:
|
| 202 |
+
token_ids = [t for t in token_ids if t < self.timestamp_begin]
|
| 203 |
+
return self.encoding.decode(token_ids, **kwargs)
|
| 204 |
+
|
| 205 |
+
def decode_with_timestamps(self, token_ids: List[int], **kwargs) -> str:
|
| 206 |
+
"""
|
| 207 |
+
Timestamp tokens are above other special tokens' id range and are ignored by `decode()`.
|
| 208 |
+
This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>".
|
| 209 |
+
"""
|
| 210 |
+
return self.encoding.decode(token_ids, **kwargs)
|
| 211 |
+
|
| 212 |
+
def get_vocab_size(self) -> int:
|
| 213 |
+
return self.encoding.n_vocab
|
| 214 |
+
|
| 215 |
+
@cached_property
|
| 216 |
+
def eot(self) -> int:
|
| 217 |
+
return self.encoding.eot_token
|
| 218 |
+
|
| 219 |
+
@cached_property
|
| 220 |
+
def transcribe(self) -> int:
|
| 221 |
+
return self.special_tokens["<|transcribe|>"]
|
| 222 |
+
|
| 223 |
+
@cached_property
|
| 224 |
+
def translate(self) -> int:
|
| 225 |
+
return self.special_tokens["<|translate|>"]
|
| 226 |
+
|
| 227 |
+
@cached_property
|
| 228 |
+
def sot(self) -> int:
|
| 229 |
+
return self.special_tokens["<|startoftranscript|>"]
|
| 230 |
+
|
| 231 |
+
@cached_property
|
| 232 |
+
def sot_lm(self) -> int:
|
| 233 |
+
return self.special_tokens["<|startoflm|>"]
|
| 234 |
+
|
| 235 |
+
@cached_property
|
| 236 |
+
def sot_prev(self) -> int:
|
| 237 |
+
return self.special_tokens["<|startofprev|>"]
|
| 238 |
+
|
| 239 |
+
@cached_property
|
| 240 |
+
def no_speech(self) -> int:
|
| 241 |
+
return self.special_tokens["<|nospeech|>"]
|
| 242 |
+
|
| 243 |
+
@cached_property
|
| 244 |
+
def no_timestamps(self) -> int:
|
| 245 |
+
return self.special_tokens["<|notimestamps|>"]
|
| 246 |
+
|
| 247 |
+
@cached_property
|
| 248 |
+
def timestamp_begin(self) -> int:
|
| 249 |
+
return self.special_tokens["<|0.00|>"]
|
| 250 |
+
|
| 251 |
+
@cached_property
|
| 252 |
+
def language_token(self) -> int:
|
| 253 |
+
"""Returns the token id corresponding to the value of the `language` field"""
|
| 254 |
+
if self.language is None:
|
| 255 |
+
raise ValueError("This tokenizer does not have language token configured")
|
| 256 |
+
|
| 257 |
+
return self.to_language_token(self.language)
|
| 258 |
+
|
| 259 |
+
def to_language_token(self, language):
|
| 260 |
+
if token := self.special_tokens.get(f"<|{language}|>", None):
|
| 261 |
+
return token
|
| 262 |
+
|
| 263 |
+
raise KeyError(f"Language {language} not found in tokenizer.")
|
| 264 |
+
|
| 265 |
+
@cached_property
|
| 266 |
+
def all_language_tokens(self) -> Tuple[int]:
|
| 267 |
+
result = []
|
| 268 |
+
for token, token_id in self.special_tokens.items():
|
| 269 |
+
if token.strip("<|>") in LANGUAGES:
|
| 270 |
+
result.append(token_id)
|
| 271 |
+
return tuple(result)[: self.num_languages]
|
| 272 |
+
|
| 273 |
+
@cached_property
|
| 274 |
+
def all_language_codes(self) -> Tuple[str]:
|
| 275 |
+
return tuple(self.decode([_l]).strip("<|>") for _l in self.all_language_tokens)
|
| 276 |
+
|
| 277 |
+
@cached_property
|
| 278 |
+
def sot_sequence_including_notimestamps(self) -> Tuple[int]:
|
| 279 |
+
return tuple(list(self.sot_sequence) + [self.no_timestamps])
|
| 280 |
+
|
| 281 |
+
@cached_property
|
| 282 |
+
def non_speech_tokens(self) -> Tuple[int]:
|
| 283 |
+
"""
|
| 284 |
+
Returns the list of tokens to suppress in order to avoid any speaker tags or non-speech
|
| 285 |
+
annotations, to prevent sampling texts that are not actually spoken in the audio, e.g.
|
| 286 |
+
|
| 287 |
+
- ♪♪♪
|
| 288 |
+
- ( SPEAKING FOREIGN LANGUAGE )
|
| 289 |
+
- [DAVID] Hey there,
|
| 290 |
+
|
| 291 |
+
keeping basic punctuations like commas, periods, question marks, exclamation points, etc.
|
| 292 |
+
"""
|
| 293 |
+
symbols = list('"#()*+/:;<=>@[\\]^_`{|}~「」『』')
|
| 294 |
+
symbols += (
|
| 295 |
+
"<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split()
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
# symbols that may be a single token or multiple tokens depending on the tokenizer.
|
| 299 |
+
# In case they're multiple tokens, suppress the first token, which is safe because:
|
| 300 |
+
# These are between U+2640 and U+267F miscellaneous symbols that are okay to suppress
|
| 301 |
+
# in generations, and in the 3-byte UTF-8 representation they share the first two bytes.
|
| 302 |
+
miscellaneous = set("♩♪♫♬♭♮♯")
|
| 303 |
+
assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous)
|
| 304 |
+
|
| 305 |
+
# allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word
|
| 306 |
+
result = {self.encoding.encode(" -")[0], self.encoding.encode(" '")[0]}
|
| 307 |
+
for symbol in symbols + list(miscellaneous):
|
| 308 |
+
for tokens in [
|
| 309 |
+
self.encoding.encode(symbol),
|
| 310 |
+
self.encoding.encode(" " + symbol),
|
| 311 |
+
]:
|
| 312 |
+
if len(tokens) == 1 or symbol in miscellaneous:
|
| 313 |
+
result.add(tokens[0])
|
| 314 |
+
|
| 315 |
+
return tuple(sorted(result))
|
| 316 |
+
|
| 317 |
+
def split_to_word_tokens(self, tokens: List[int]):
|
| 318 |
+
if self.language in {"zh", "ja", "th", "lo", "my", "yue"}:
|
| 319 |
+
# These languages don't typically use spaces, so it is difficult to split words
|
| 320 |
+
# without morpheme analysis. Here, we instead split words at any
|
| 321 |
+
# position where the tokens are decoded as valid unicode points
|
| 322 |
+
return self.split_tokens_on_unicode(tokens)
|
| 323 |
+
|
| 324 |
+
return self.split_tokens_on_spaces(tokens)
|
| 325 |
+
|
| 326 |
+
def split_tokens_on_unicode(self, tokens: List[int]):
|
| 327 |
+
decoded_full = self.decode_with_timestamps(tokens)
|
| 328 |
+
replacement_char = "\ufffd"
|
| 329 |
+
|
| 330 |
+
words = []
|
| 331 |
+
word_tokens = []
|
| 332 |
+
current_tokens = []
|
| 333 |
+
unicode_offset = 0
|
| 334 |
+
|
| 335 |
+
for token in tokens:
|
| 336 |
+
current_tokens.append(token)
|
| 337 |
+
decoded = self.decode_with_timestamps(current_tokens)
|
| 338 |
+
|
| 339 |
+
if (
|
| 340 |
+
replacement_char not in decoded
|
| 341 |
+
or decoded_full[unicode_offset + decoded.index(replacement_char)]
|
| 342 |
+
== replacement_char
|
| 343 |
+
):
|
| 344 |
+
words.append(decoded)
|
| 345 |
+
word_tokens.append(current_tokens)
|
| 346 |
+
current_tokens = []
|
| 347 |
+
unicode_offset += len(decoded)
|
| 348 |
+
|
| 349 |
+
return words, word_tokens
|
| 350 |
+
|
| 351 |
+
def split_tokens_on_spaces(self, tokens: List[int]):
|
| 352 |
+
subwords, subword_tokens_list = self.split_tokens_on_unicode(tokens)
|
| 353 |
+
words = []
|
| 354 |
+
word_tokens = []
|
| 355 |
+
|
| 356 |
+
for subword, subword_tokens in zip(subwords, subword_tokens_list):
|
| 357 |
+
special = subword_tokens[0] >= self.eot
|
| 358 |
+
with_space = subword.startswith(" ")
|
| 359 |
+
punctuation = subword.strip() in string.punctuation
|
| 360 |
+
if special or with_space or punctuation or len(words) == 0:
|
| 361 |
+
words.append(subword)
|
| 362 |
+
word_tokens.append(subword_tokens)
|
| 363 |
+
else:
|
| 364 |
+
words[-1] = words[-1] + subword
|
| 365 |
+
word_tokens[-1].extend(subword_tokens)
|
| 366 |
+
|
| 367 |
+
return words, word_tokens
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
@lru_cache(maxsize=None)
|
| 371 |
+
def get_encoding(name: str = "gpt2", num_languages: int = 99):
|
| 372 |
+
vocab_path = os.path.join(os.path.dirname(__file__), "assets", f"{name}.tiktoken")
|
| 373 |
+
ranks = {
|
| 374 |
+
base64.b64decode(token): int(rank)
|
| 375 |
+
for token, rank in (line.split() for line in open(vocab_path) if line)
|
| 376 |
+
}
|
| 377 |
+
n_vocab = len(ranks)
|
| 378 |
+
special_tokens = {}
|
| 379 |
+
|
| 380 |
+
specials = [
|
| 381 |
+
"<|endoftext|>",
|
| 382 |
+
"<|startoftranscript|>",
|
| 383 |
+
*[f"<|{lang}|>" for lang in list(LANGUAGES.keys())[:num_languages]],
|
| 384 |
+
*[f"<|{audio_event}|>" for audio_event in list(AUDIO_EVENT.keys())],
|
| 385 |
+
*[f"<|{emotion}|>" for emotion in list(EMOTION.keys())],
|
| 386 |
+
"<|translate|>",
|
| 387 |
+
"<|transcribe|>",
|
| 388 |
+
"<|startoflm|>",
|
| 389 |
+
"<|startofprev|>",
|
| 390 |
+
"<|nospeech|>",
|
| 391 |
+
"<|notimestamps|>",
|
| 392 |
+
*[f"<|SPECIAL_TOKEN_{i}|>" for i in range(1, 31)], # register special tokens for ASR
|
| 393 |
+
*[f"<|{tts}|>" for tts in list(TTS_Vocal_Token.keys())], # register special tokens for TTS
|
| 394 |
+
*[f"<|{i * 0.02:.2f}|>" for i in range(1501)],
|
| 395 |
+
]
|
| 396 |
+
|
| 397 |
+
for token in specials:
|
| 398 |
+
special_tokens[token] = n_vocab
|
| 399 |
+
n_vocab += 1
|
| 400 |
+
|
| 401 |
+
return tiktoken.Encoding(
|
| 402 |
+
name=os.path.basename(vocab_path),
|
| 403 |
+
explicit_n_vocab=n_vocab,
|
| 404 |
+
pat_str=r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""",
|
| 405 |
+
mergeable_ranks=ranks,
|
| 406 |
+
special_tokens=special_tokens,
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
@lru_cache(maxsize=None)
|
| 411 |
+
def get_tokenizer(
|
| 412 |
+
multilingual: bool,
|
| 413 |
+
*,
|
| 414 |
+
num_languages: int = 99,
|
| 415 |
+
language: Optional[str] = None,
|
| 416 |
+
task: Optional[str] = None, # Literal["transcribe", "translate", None]
|
| 417 |
+
) -> Tokenizer:
|
| 418 |
+
if language is not None:
|
| 419 |
+
language = language.lower()
|
| 420 |
+
if language not in LANGUAGES:
|
| 421 |
+
if language in TO_LANGUAGE_CODE:
|
| 422 |
+
language = TO_LANGUAGE_CODE[language]
|
| 423 |
+
else:
|
| 424 |
+
raise ValueError(f"Unsupported language: {language}")
|
| 425 |
+
|
| 426 |
+
if multilingual:
|
| 427 |
+
encoding_name = "multilingual_zh_ja_yue_char_del"
|
| 428 |
+
language = language or "en"
|
| 429 |
+
task = task or "transcribe"
|
| 430 |
+
else:
|
| 431 |
+
encoding_name = "gpt2"
|
| 432 |
+
language = None
|
| 433 |
+
task = None
|
| 434 |
+
|
| 435 |
+
encoding = get_encoding(name=encoding_name, num_languages=num_languages)
|
| 436 |
+
|
| 437 |
+
return Tokenizer(
|
| 438 |
+
encoding=encoding, num_languages=num_languages, language=language, task=task
|
| 439 |
+
)
|