import gradio as gr import numpy as np import pandas as pd import torch import torchaudio import time from transformers import pipeline # from speechbrain.inference.VAD import VAD from speechbrain.inference.classifiers import EncoderClassifier transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-tiny") # VAD = VAD.from_hparams(source="speechbrain/vad-crdnn-libriparty", savedir="pretrained_models/vad-crdnn-libriparty") language_id = EncoderClassifier.from_hparams(source="speechbrain/lang-id-voxlingua107-ecapa") data = [] current_chunk = [] index_to_lang = { 0: 'Abkhazian', 1: 'Afrikaans', 2: 'Amharic', 3: 'Arabic', 4: 'Assamese', 5: 'Azerbaijani', 6: 'Bashkir', 7: 'Belarusian', 8: 'Bulgarian', 9: 'Bengali', 10: 'Tibetan', 11: 'Breton', 12: 'Bosnian', 13: 'Catalan', 14: 'Cebuano', 15: 'Czech', 16: 'Welsh', 17: 'Danish', 18: 'German', 19: 'Greek', 20: 'English', 21: 'Esperanto', 22: 'Spanish', 23: 'Estonian', 24: 'Basque', 25: 'Persian', 26: 'Finnish', 27: 'Faroese', 28: 'French', 29: 'Galician', 30: 'Guarani', 31: 'Gujarati', 32: 'Manx', 33: 'Hausa', 34: 'Hawaiian', 35: 'Hindi', 36: 'Croatian', 37: 'Haitian', 38: 'Hungarian', 39: 'Armenian', 40: 'Interlingua', 41: 'Indonesian', 42: 'Icelandic', 43: 'Italian', 44: 'Hebrew', 45: 'Japanese', 46: 'Javanese', 47: 'Georgian', 48: 'Kazakh', 49: 'Central Khmer', 50: 'Kannada', 51: 'Korean', 52: 'Latin', 53: 'Luxembourgish', 54: 'Lingala', 55: 'Lao', 56: 'Lithuanian', 57: 'Latvian', 58: 'Malagasy', 59: 'Maori', 60: 'Macedonian', 61: 'Malayalam', 62: 'Mongolian', 63: 'Marathi', 64: 'Malay', 65: 'Maltese', 66: 'Burmese', 67: 'Nepali', 68: 'Dutch', 69: 'Norwegian Nynorsk', 70: 'Norwegian', 71: 'Occitan', 72: 'Panjabi', 73: 'Polish', 74: 'Pushto', 75: 'Portuguese', 76: 'Romanian', 77: 'Russian', 78: 'Sanskrit', 79: 'Scots', 80: 'Sindhi', 81: 'Sinhala', 82: 'Slovak', 83: 'Slovenian', 84: 'Shona', 85: 'Somali', 86: 'Albanian', 87: 'Serbian', 88: 'Sundanese', 89: 'Swedish', 90: 'Swahili', 91: 'Tamil', 92: 'Telugu', 93: 'Tajik', 94: 'Thai', 95: 'Turkmen', 96: 'Tagalog', 97: 'Turkish', 98: 'Tatar', 99: 'Ukrainian', 100: 'Urdu', 101: 'Uzbek', 102: 'Vietnamese', 103: 'Waray', 104: 'Yiddish', 105: 'Yoruba', 106: 'Chinese' } lang_index_JA_EN = { 'ja': 45, 'en': 20, } def resample_audio(audio, orig_sr, target_sr=16000): if orig_sr != target_sr: print(f"Resampling audio from {orig_sr} to {target_sr}") audio = audio.astype(np.float32) resampler = torchaudio.transforms.Resample(orig_freq=orig_sr, new_freq=target_sr) audio = resampler(torch.from_numpy(audio).unsqueeze(0)).squeeze(0).numpy() return audio SAMPLING_RATE = 16000 CHUNK_DURATION = 5 # 5秒ごとのチャンク def process_audio(audio): global data, current_chunk print("Process_audio") print(audio) sr, audio_data = audio print(audio_data.shape) # 一番最初にSampling rateを揃えておく audio_data = resample_audio(audio_data, sr, target_sr=SAMPLING_RATE) audio_sec = 0 # 新しいデータを現在のチャンクに追加 current_chunk.append(audio_data) total_chunk = np.concatenate(current_chunk) while len(total_chunk) >= SAMPLING_RATE * CHUNK_DURATION: chunk = total_chunk[:SAMPLING_RATE * CHUNK_DURATION] total_chunk = total_chunk[SAMPLING_RATE * CHUNK_DURATION:] # 処理済みの部分を削除 audio_sec += CHUNK_DURATION print(f"Processing audio chunk of length {len(chunk)}") volume_norm = np.linalg.norm(chunk) / np.finfo(np.float32).max length = len(chunk) / SAMPLING_RATE # 音声データの長さ(秒) lang_guess = language_id.classify_batch(torch.from_numpy(chunk).unsqueeze(0)) # 日本語と英語の確率値を取得 ja_prob = lang_guess[0][0][lang_index_JA_EN['ja']].item() en_prob = lang_guess[0][0][lang_index_JA_EN['en']].item() ja_en = 'ja' if ja_prob > en_prob else 'en' # Top 3言語を取得 top3_indices = torch.topk(lang_guess[0], 3, dim=1, largest=True).indices[0] top3_languages = [index_to_lang[idx.item()] for idx in top3_indices] # transcript transcript = transcriber(chunk) print(transcript) data.append({ # "Time": pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S'), "Time": audio_sec, "Length (s)": length, "Volume": volume_norm, "Japanese_English": f"{ja_en} ({ja_prob:.2f}, {en_prob:.2f})", "Language": top3_languages, "Text": transcript['text'], }) df = pd.DataFrame(data) yield (SAMPLING_RATE, chunk), df # 未処理の残りのデータを保持 current_chunk = [total_chunk] # inputs = gr.Audio(sources=["microphone", "upload"], type="numpy", streaming=True) inputs = gr.Audio(sources=["microphone", "upload"], type="numpy") outputs = [gr.Audio(type="numpy"), gr.DataFrame(headers=["Time", "Volume", "Length (s)"])] demo = gr.Interface( fn=process_audio, inputs=inputs, outputs=outputs, live=True, title="Real-time Audio Processing", description="Speak into the microphone and see real-time audio processing results." ) demo.launch()