Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
import torch | |
import torchaudio | |
import time | |
from transformers import pipeline | |
# from speechbrain.inference.VAD import VAD | |
from speechbrain.inference.classifiers import EncoderClassifier | |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-tiny") | |
# VAD = VAD.from_hparams(source="speechbrain/vad-crdnn-libriparty", savedir="pretrained_models/vad-crdnn-libriparty") | |
language_id = EncoderClassifier.from_hparams(source="speechbrain/lang-id-voxlingua107-ecapa") | |
data = [] | |
current_chunk = [] | |
index_to_lang = { | |
0: 'Abkhazian', 1: 'Afrikaans', 2: 'Amharic', 3: 'Arabic', 4: 'Assamese', | |
5: 'Azerbaijani', 6: 'Bashkir', 7: 'Belarusian', 8: 'Bulgarian', 9: 'Bengali', | |
10: 'Tibetan', 11: 'Breton', 12: 'Bosnian', 13: 'Catalan', 14: 'Cebuano', | |
15: 'Czech', 16: 'Welsh', 17: 'Danish', 18: 'German', 19: 'Greek', | |
20: 'English', 21: 'Esperanto', 22: 'Spanish', 23: 'Estonian', 24: 'Basque', | |
25: 'Persian', 26: 'Finnish', 27: 'Faroese', 28: 'French', 29: 'Galician', | |
30: 'Guarani', 31: 'Gujarati', 32: 'Manx', 33: 'Hausa', 34: 'Hawaiian', | |
35: 'Hindi', 36: 'Croatian', 37: 'Haitian', 38: 'Hungarian', 39: 'Armenian', | |
40: 'Interlingua', 41: 'Indonesian', 42: 'Icelandic', 43: 'Italian', 44: 'Hebrew', | |
45: 'Japanese', 46: 'Javanese', 47: 'Georgian', 48: 'Kazakh', 49: 'Central Khmer', | |
50: 'Kannada', 51: 'Korean', 52: 'Latin', 53: 'Luxembourgish', 54: 'Lingala', | |
55: 'Lao', 56: 'Lithuanian', 57: 'Latvian', 58: 'Malagasy', 59: 'Maori', | |
60: 'Macedonian', 61: 'Malayalam', 62: 'Mongolian', 63: 'Marathi', 64: 'Malay', | |
65: 'Maltese', 66: 'Burmese', 67: 'Nepali', 68: 'Dutch', 69: 'Norwegian Nynorsk', | |
70: 'Norwegian', 71: 'Occitan', 72: 'Panjabi', 73: 'Polish', 74: 'Pushto', | |
75: 'Portuguese', 76: 'Romanian', 77: 'Russian', 78: 'Sanskrit', 79: 'Scots', | |
80: 'Sindhi', 81: 'Sinhala', 82: 'Slovak', 83: 'Slovenian', 84: 'Shona', | |
85: 'Somali', 86: 'Albanian', 87: 'Serbian', 88: 'Sundanese', 89: 'Swedish', | |
90: 'Swahili', 91: 'Tamil', 92: 'Telugu', 93: 'Tajik', 94: 'Thai', | |
95: 'Turkmen', 96: 'Tagalog', 97: 'Turkish', 98: 'Tatar', 99: 'Ukrainian', | |
100: 'Urdu', 101: 'Uzbek', 102: 'Vietnamese', 103: 'Waray', 104: 'Yiddish', | |
105: 'Yoruba', 106: 'Chinese' | |
} | |
lang_index_JA_EN = { | |
'ja': 45, | |
'en': 20, | |
} | |
def resample_audio(audio, orig_sr, target_sr=16000): | |
if orig_sr != target_sr: | |
print(f"Resampling audio from {orig_sr} to {target_sr}") | |
audio = audio.astype(np.float32) | |
resampler = torchaudio.transforms.Resample(orig_freq=orig_sr, new_freq=target_sr) | |
audio = resampler(torch.from_numpy(audio).unsqueeze(0)).squeeze(0).numpy() | |
return audio | |
SAMPLING_RATE = 16000 | |
CHUNK_DURATION = 5 # 5秒ごとのチャンク | |
def process_audio(audio): | |
global data, current_chunk | |
print("Process_audio") | |
print(audio) | |
sr, audio_data = audio | |
print(audio_data.shape) | |
# 一番最初にSampling rateを揃えておく | |
audio_data = resample_audio(audio_data, sr, target_sr=SAMPLING_RATE) | |
audio_sec = 0 | |
# 新しいデータを現在のチャンクに追加 | |
current_chunk.append(audio_data) | |
total_chunk = np.concatenate(current_chunk) | |
while len(total_chunk) >= SAMPLING_RATE * CHUNK_DURATION: | |
chunk = total_chunk[:SAMPLING_RATE * CHUNK_DURATION] | |
total_chunk = total_chunk[SAMPLING_RATE * CHUNK_DURATION:] # 処理済みの部分を削除 | |
audio_sec += CHUNK_DURATION | |
print(f"Processing audio chunk of length {len(chunk)}") | |
volume_norm = np.linalg.norm(chunk) / np.finfo(np.float32).max | |
length = len(chunk) / SAMPLING_RATE # 音声データの長さ(秒) | |
lang_guess = language_id.classify_batch(torch.from_numpy(chunk).unsqueeze(0)) | |
# 日本語と英語の確率値を取得 | |
ja_prob = lang_guess[0][0][lang_index_JA_EN['ja']].item() | |
en_prob = lang_guess[0][0][lang_index_JA_EN['en']].item() | |
ja_en = 'ja' if ja_prob > en_prob else 'en' | |
# Top 3言語を取得 | |
top3_indices = torch.topk(lang_guess[0], 3, dim=1, largest=True).indices[0] | |
top3_languages = [index_to_lang[idx.item()] for idx in top3_indices] | |
# transcript | |
transcript = transcriber(chunk) | |
print(transcript) | |
data.append({ | |
# "Time": pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S'), | |
"Time": audio_sec, | |
"Length (s)": length, | |
"Volume": volume_norm, | |
"Japanese_English": f"{ja_en} ({ja_prob:.2f}, {en_prob:.2f})", | |
"Language": top3_languages, | |
"Text": transcript['text'], | |
}) | |
df = pd.DataFrame(data) | |
yield (SAMPLING_RATE, chunk), df | |
# 未処理の残りのデータを保持 | |
current_chunk = [total_chunk] | |
# inputs = gr.Audio(sources=["microphone", "upload"], type="numpy", streaming=True) | |
inputs = gr.Audio(sources=["microphone", "upload"], type="numpy") | |
outputs = [gr.Audio(type="numpy"), gr.DataFrame(headers=["Time", "Volume", "Length (s)"])] | |
demo = gr.Interface( | |
fn=process_audio, | |
inputs=inputs, | |
outputs=outputs, | |
live=True, | |
title="Real-time Audio Processing", | |
description="Speak into the microphone and see real-time audio processing results." | |
) | |
demo.launch() | |