Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -51,7 +51,7 @@ def load_counseling_dataset():
|
|
| 51 |
|
| 52 |
dataset = load_counseling_dataset()
|
| 53 |
|
| 54 |
-
# Load
|
| 55 |
@st.cache_resource
|
| 56 |
def load_text_generation_model():
|
| 57 |
return pipeline("text-generation", model="EleutherAI/gpt-neo-1.3B")
|
|
@@ -65,12 +65,21 @@ Welcome to the Mental Health Counseling Chat application.
|
|
| 65 |
This platform is designed to provide supportive, positive, and encouraging responses based on mental health counseling expertise.
|
| 66 |
""")
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
# Explore dataset for additional context or resources (optional)
|
| 69 |
if st.checkbox("Show Example Questions and Answers from Dataset"):
|
| 70 |
sample = dataset["train"].shuffle(seed=42).select(range(3)) # Display 3 random samples
|
| 71 |
for example in sample:
|
| 72 |
-
st.markdown(f"**Question:** {example[
|
| 73 |
-
st.markdown(f"**Answer:** {example[
|
| 74 |
st.markdown("---")
|
| 75 |
|
| 76 |
# User input for mental health concerns
|
|
@@ -78,13 +87,16 @@ user_input = st.text_area("Your question or concern:", placeholder="Type here...
|
|
| 78 |
|
| 79 |
if st.button("Get Supportive Response"):
|
| 80 |
if user_input.strip():
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
| 88 |
else:
|
| 89 |
st.error("Please enter a question or concern to receive a response.")
|
| 90 |
|
|
|
|
| 51 |
|
| 52 |
dataset = load_counseling_dataset()
|
| 53 |
|
| 54 |
+
# Load text-generation model
|
| 55 |
@st.cache_resource
|
| 56 |
def load_text_generation_model():
|
| 57 |
return pipeline("text-generation", model="EleutherAI/gpt-neo-1.3B")
|
|
|
|
| 65 |
This platform is designed to provide supportive, positive, and encouraging responses based on mental health counseling expertise.
|
| 66 |
""")
|
| 67 |
|
| 68 |
+
# Check dataset columns
|
| 69 |
+
st.markdown("### Dataset Structure")
|
| 70 |
+
column_names = dataset["train"].column_names
|
| 71 |
+
st.write(f"Columns available in dataset: {column_names}")
|
| 72 |
+
|
| 73 |
+
# Assuming "question" and "answer" columns exist; adjust as per dataset
|
| 74 |
+
question_col = "question" if "question" in column_names else column_names[0]
|
| 75 |
+
answer_col = "answer" if "answer" in column_names else column_names[1]
|
| 76 |
+
|
| 77 |
# Explore dataset for additional context or resources (optional)
|
| 78 |
if st.checkbox("Show Example Questions and Answers from Dataset"):
|
| 79 |
sample = dataset["train"].shuffle(seed=42).select(range(3)) # Display 3 random samples
|
| 80 |
for example in sample:
|
| 81 |
+
st.markdown(f"**Question:** {example[question_col]}")
|
| 82 |
+
st.markdown(f"**Answer:** {example[answer_col]}")
|
| 83 |
st.markdown("---")
|
| 84 |
|
| 85 |
# User input for mental health concerns
|
|
|
|
| 87 |
|
| 88 |
if st.button("Get Supportive Response"):
|
| 89 |
if user_input.strip():
|
| 90 |
+
try:
|
| 91 |
+
# Generate response using the model
|
| 92 |
+
prompt = f"User: {user_input}\nCounselor:"
|
| 93 |
+
response = text_generator(prompt, max_length=200, num_return_sequences=1)
|
| 94 |
+
counselor_reply = response[0]["generated_text"].split("Counselor:")[-1].strip()
|
| 95 |
+
|
| 96 |
+
st.subheader("Counselor's Response:")
|
| 97 |
+
st.write(counselor_reply)
|
| 98 |
+
except Exception as e:
|
| 99 |
+
st.error(f"An error occurred while generating the response: {e}")
|
| 100 |
else:
|
| 101 |
st.error("Please enter a question or concern to receive a response.")
|
| 102 |
|