Update app.py
Browse files
app.py
CHANGED
@@ -3,9 +3,8 @@ from PIL import Image # For image processing
|
|
3 |
from transformers import pipeline
|
4 |
import streamlit as st
|
5 |
import os
|
6 |
-
import
|
7 |
from docx import Document # For Word document processing
|
8 |
-
import asyncio # For asynchronous processing
|
9 |
|
10 |
# Load the TrOCR model for image-to-text (smaller model)
|
11 |
trocr_pipeline = pipeline("image-to-text", model="microsoft/trocr-base-printed")
|
@@ -16,7 +15,7 @@ translator = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
|
|
16 |
# Function to extract text from an image using TrOCR
|
17 |
def extract_text_from_image(image):
|
18 |
result = trocr_pipeline(image)
|
19 |
-
return result[0]['generated_text']
|
20 |
|
21 |
# Function to extract text from a PDF (optimized for performance)
|
22 |
def extract_from_pdf(pdf_path):
|
@@ -24,9 +23,8 @@ def extract_from_pdf(pdf_path):
|
|
24 |
full_text = ""
|
25 |
for page_num in range(len(doc)):
|
26 |
page = doc.load_page(page_num)
|
27 |
-
# Extract text directly from the page (faster than OCR for text-based PDFs)
|
28 |
full_text += page.get_text() + "\n"
|
29 |
-
return full_text
|
30 |
|
31 |
# Function to extract text from a Word document
|
32 |
def extract_from_word(docx_path):
|
@@ -34,16 +32,21 @@ def extract_from_word(docx_path):
|
|
34 |
full_text = ""
|
35 |
for para in doc.paragraphs:
|
36 |
full_text += para.text + "\n"
|
37 |
-
return full_text
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Function to translate text to English (batched for performance)
|
40 |
def translate_text(text):
|
41 |
-
# Split text into smaller chunks for faster translation
|
42 |
chunks = [text[i:i + 500] for i in range(0, len(text), 500)]
|
43 |
translated_text = ""
|
44 |
for chunk in chunks:
|
45 |
-
|
46 |
-
|
|
|
|
|
47 |
return translated_text.strip()
|
48 |
|
49 |
# Function to create a PDF from translated text
|
@@ -65,38 +68,44 @@ if uploaded_file is not None:
|
|
65 |
with open(temp_file_path, "wb") as f:
|
66 |
f.write(uploaded_file.getbuffer())
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from transformers import pipeline
|
4 |
import streamlit as st
|
5 |
import os
|
6 |
+
import re
|
7 |
from docx import Document # For Word document processing
|
|
|
8 |
|
9 |
# Load the TrOCR model for image-to-text (smaller model)
|
10 |
trocr_pipeline = pipeline("image-to-text", model="microsoft/trocr-base-printed")
|
|
|
15 |
# Function to extract text from an image using TrOCR
|
16 |
def extract_text_from_image(image):
|
17 |
result = trocr_pipeline(image)
|
18 |
+
return result[0]['generated_text'] if result else ""
|
19 |
|
20 |
# Function to extract text from a PDF (optimized for performance)
|
21 |
def extract_from_pdf(pdf_path):
|
|
|
23 |
full_text = ""
|
24 |
for page_num in range(len(doc)):
|
25 |
page = doc.load_page(page_num)
|
|
|
26 |
full_text += page.get_text() + "\n"
|
27 |
+
return full_text.strip()
|
28 |
|
29 |
# Function to extract text from a Word document
|
30 |
def extract_from_word(docx_path):
|
|
|
32 |
full_text = ""
|
33 |
for para in doc.paragraphs:
|
34 |
full_text += para.text + "\n"
|
35 |
+
return full_text.strip()
|
36 |
+
|
37 |
+
# Function to clean extracted text
|
38 |
+
def clean_text(text):
|
39 |
+
return re.sub(r'[\x00-\x1f\x7f-\x9f]', '', text).strip()
|
40 |
|
41 |
# Function to translate text to English (batched for performance)
|
42 |
def translate_text(text):
|
|
|
43 |
chunks = [text[i:i + 500] for i in range(0, len(text), 500)]
|
44 |
translated_text = ""
|
45 |
for chunk in chunks:
|
46 |
+
if chunk.strip():
|
47 |
+
translated_chunk = translator(chunk, max_length=400)
|
48 |
+
if isinstance(translated_chunk, list) and 'translation_text' in translated_chunk[0]:
|
49 |
+
translated_text += translated_chunk[0]['translation_text'] + " "
|
50 |
return translated_text.strip()
|
51 |
|
52 |
# Function to create a PDF from translated text
|
|
|
68 |
with open(temp_file_path, "wb") as f:
|
69 |
f.write(uploaded_file.getbuffer())
|
70 |
|
71 |
+
try:
|
72 |
+
# Extract text based on file type
|
73 |
+
if file_extension == "pdf":
|
74 |
+
extracted_text = extract_from_pdf(temp_file_path)
|
75 |
+
elif file_extension in ["jpg", "jpeg", "png"]:
|
76 |
+
image = Image.open(temp_file_path)
|
77 |
+
extracted_text = extract_text_from_image(image)
|
78 |
+
elif file_extension == "docx":
|
79 |
+
extracted_text = extract_from_word(temp_file_path)
|
80 |
+
else:
|
81 |
+
st.error("Unsupported file format.")
|
82 |
+
st.stop()
|
83 |
+
|
84 |
+
# Clean and translate the extracted text
|
85 |
+
extracted_text = clean_text(extracted_text)
|
86 |
+
st.write("Extracted Text for Debugging (First 500 characters):", extracted_text[:500])
|
87 |
+
|
88 |
+
translated_text = translate_text(extracted_text)
|
89 |
+
|
90 |
+
# Display the translated text
|
91 |
+
st.subheader("Translated Text (English)")
|
92 |
+
st.write(translated_text)
|
93 |
+
|
94 |
+
# Create a PDF from the translated text
|
95 |
+
output_pdf_path = "translated_document.pdf"
|
96 |
+
create_pdf(translated_text, output_pdf_path)
|
97 |
+
|
98 |
+
# Provide a download link for the translated PDF
|
99 |
+
with open(output_pdf_path, "rb") as f:
|
100 |
+
st.download_button(
|
101 |
+
label="Download Translated PDF",
|
102 |
+
data=f,
|
103 |
+
file_name="translated_document.pdf",
|
104 |
+
mime="application/pdf"
|
105 |
+
)
|
106 |
+
finally:
|
107 |
+
# Clean up temporary files
|
108 |
+
if os.path.exists(temp_file_path):
|
109 |
+
os.remove(temp_file_path)
|
110 |
+
if os.path.exists(output_pdf_path):
|
111 |
+
os.remove(output_pdf_path)
|