Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from sentence_transformers import SentenceTransformer, util | |
import PyPDF2 | |
from docx import Document | |
# Load the tokenizer and model for sentence embeddings | |
def load_model(): | |
tokenizer = AutoTokenizer.from_pretrained("rakeshkiriyath/gpt2Medium_text_to_sql") | |
model = AutoModelForCausalLM.from_pretrained("rakeshkiriyath/gpt2Medium_text_to_sql") | |
sentence_model = SentenceTransformer('all-MiniLM-L6-v2') # Smaller, faster sentence embeddings model | |
return tokenizer, model, sentence_model | |
# Extract text from a PDF file | |
def extract_text_from_pdf(pdf_file): | |
pdf_reader = PyPDF2.PdfReader(pdf_file) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
# Extract text from a Word document | |
def extract_text_from_word(docx_file): | |
doc = Document(docx_file) | |
text = "" | |
for paragraph in doc.paragraphs: | |
text += paragraph.text + "\n" | |
return text | |
# Compare sentences for similarity | |
def compare_sentences(doc1_sentences, doc2_sentences, sentence_model): | |
similar_sentences = [] | |
for i, sent1 in enumerate(doc1_sentences): | |
best_match = None | |
best_score = 0 | |
for j, sent2 in enumerate(doc2_sentences): | |
score = util.pytorch_cos_sim(sentence_model.encode(sent1), sentence_model.encode(sent2)).item() | |
if score > best_score: # Higher similarity score | |
best_score = score | |
best_match = (i, j, score, sent1, sent2) | |
if best_match and best_score > 0.6: # Threshold for similarity | |
similar_sentences.append(best_match) | |
return similar_sentences | |
# Streamlit UI | |
def main(): | |
st.title("Comparative Analysis of Two Documents") | |
st.sidebar.header("Upload Files") | |
# Upload files | |
uploaded_file1 = st.sidebar.file_uploader("Upload the First Document (PDF/Word)", type=["pdf", "docx"]) | |
uploaded_file2 = st.sidebar.file_uploader("Upload the Second Document (PDF/Word)", type=["pdf", "docx"]) | |
if uploaded_file1 and uploaded_file2: | |
# Extract text from the uploaded documents | |
text1 = extract_text_from_pdf(uploaded_file1) if uploaded_file1.name.endswith(".pdf") else extract_text_from_word(uploaded_file1) | |
text2 = extract_text_from_pdf(uploaded_file2) if uploaded_file2.name.endswith(".pdf") else extract_text_from_word(uploaded_file2) | |
# Split text into sentences | |
doc1_sentences = text1.split('. ') | |
doc2_sentences = text2.split('. ') | |
# Load model | |
tokenizer, model, sentence_model = load_model() | |
# Perform sentence comparison | |
similar_sentences = compare_sentences(doc1_sentences, doc2_sentences, sentence_model) | |
# Display results | |
st.header("Comparative Analysis Results") | |
if similar_sentences: | |
for match in similar_sentences: | |
doc1_index, doc2_index, score, sent1, sent2 = match | |
st.markdown(f"**Document 1 Sentence {doc1_index + 1}:** {sent1}") | |
st.markdown(f"**Document 2 Sentence {doc2_index + 1}:** {sent2}") | |
st.markdown(f"**Similarity Score:** {score:.2f}") | |
st.markdown("---") | |
else: | |
st.info("No significantly similar sentences found.") | |
else: | |
st.warning("Please upload two documents to compare.") | |
if __name__ == "__main__": | |
main() | |