tahirsher commited on
Commit
6e04d22
·
verified ·
1 Parent(s): 9b3b4f8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +166 -0
app.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ from sentence_transformers import SentenceTransformer, util
4
+ import PyPDF2
5
+ from docx import Document
6
+ from nltk.corpus import wordnet as wn
7
+ import nltk
8
+ import pandas as pd
9
+
10
+ # Ensure required resources are downloaded
11
+ nltk.download('wordnet')
12
+ nltk.download('omw-1.4')
13
+
14
+ # Load the tokenizer and model for sentence embeddings
15
+ @st.cache_resource
16
+ def load_model():
17
+ try:
18
+ tokenizer = AutoTokenizer.from_pretrained("rakeshkiriyath/gpt2Medium_text_to_sql")
19
+ model = AutoModelForCausalLM.from_pretrained("rakeshkiriyath/gpt2Medium_text_to_sql")
20
+ sentence_model = SentenceTransformer('all-MiniLM-L6-v2') # Smaller, faster sentence embeddings model
21
+ st.success("Model loaded successfully!")
22
+ return tokenizer, model, sentence_model
23
+ except Exception as e:
24
+ st.error(f"Error loading models: {e}")
25
+ return None, None, None
26
+
27
+ # Extract text from a PDF file
28
+ def extract_text_from_pdf(pdf_file):
29
+ try:
30
+ pdf_reader = PyPDF2.PdfReader(pdf_file)
31
+ text = ""
32
+ for page in pdf_reader.pages:
33
+ text += page.extract_text()
34
+ return text
35
+ except Exception as e:
36
+ st.error(f"Error reading PDF: {e}")
37
+ return ""
38
+
39
+ # Extract text from a Word document
40
+ def extract_text_from_word(docx_file):
41
+ try:
42
+ doc = Document(docx_file)
43
+ text = ""
44
+ for paragraph in doc.paragraphs:
45
+ text += paragraph.text + "\n"
46
+ return text
47
+ except Exception as e:
48
+ st.error(f"Error reading Word document: {e}")
49
+ return ""
50
+
51
+ # Optimized comparison using embeddings and matrix operations
52
+ def compare_sentences(doc1_sentences, doc2_sentences, sentence_model):
53
+ # Encode all sentences in batches to get embeddings
54
+ doc1_embeddings = sentence_model.encode(doc1_sentences, convert_to_tensor=True, batch_size=16)
55
+ doc2_embeddings = sentence_model.encode(doc2_sentences, convert_to_tensor=True, batch_size=16)
56
+
57
+ # Compute cosine similarity matrix between all pairs
58
+ similarity_matrix = util.pytorch_cos_sim(doc1_embeddings, doc2_embeddings)
59
+
60
+ # Extract pairs with similarity > threshold
61
+ threshold = 0.6 # Adjust this for stricter or looser matching
62
+ similar_sentences = []
63
+
64
+ for i, row in enumerate(similarity_matrix):
65
+ for j, score in enumerate(row):
66
+ if score >= threshold:
67
+ similar_sentences.append((i, j, score.item(), doc1_sentences[i], doc2_sentences[j]))
68
+
69
+ return similar_sentences
70
+
71
+ # Find similar words or synonyms between two sentences
72
+ def find_similar_words(sentence1, sentence2):
73
+ words1 = set(sentence1.split())
74
+ words2 = set(sentence2.split())
75
+ similar_words = []
76
+
77
+ for word1 in words1:
78
+ for word2 in words2:
79
+ if word1 == word2 or is_synonym(word1, word2):
80
+ similar_words.append((word1, word2))
81
+
82
+ return similar_words
83
+
84
+ # Check if two words are synonyms using WordNet
85
+ def is_synonym(word1, word2):
86
+ synonyms_word1 = set(lemma.name() for synset in wn.synsets(word1) for lemma in synset.lemmas())
87
+ synonyms_word2 = set(lemma.name() for synset in wn.synsets(word2) for lemma in synset.lemmas())
88
+ return len(synonyms_word1.intersection(synonyms_word2)) > 0
89
+
90
+ # Streamlit UI
91
+ def main():
92
+ st.title("Enhanced Comparative Analysis of Two Documents")
93
+ st.sidebar.header("Upload Files")
94
+
95
+ # Upload files
96
+ uploaded_file1 = st.sidebar.file_uploader("Upload the First Document (PDF/Word)", type=["pdf", "docx"])
97
+ uploaded_file2 = st.sidebar.file_uploader("Upload the Second Document (PDF/Word)", type=["pdf", "docx"])
98
+
99
+ if uploaded_file1 and uploaded_file2:
100
+ # Extract text from the uploaded documents
101
+ if uploaded_file1.name.endswith(".pdf"):
102
+ text1 = extract_text_from_pdf(uploaded_file1)
103
+ else:
104
+ text1 = extract_text_from_word(uploaded_file1)
105
+
106
+ if uploaded_file2.name.endswith(".pdf"):
107
+ text2 = extract_text_from_pdf(uploaded_file2)
108
+ else:
109
+ text2 = extract_text_from_word(uploaded_file2)
110
+
111
+ if not text1.strip():
112
+ st.error("The first document is empty or could not be read.")
113
+ return
114
+ if not text2.strip():
115
+ st.error("The second document is empty or could not be read.")
116
+ return
117
+
118
+ st.write("### Preview of Document 1:")
119
+ st.text(text1[:500]) # Display a preview of Document 1
120
+ st.write("### Preview of Document 2:")
121
+ st.text(text2[:500]) # Display a preview of Document 2
122
+
123
+ # Split text into sentences
124
+ doc1_sentences = text1.split('. ')
125
+ doc2_sentences = text2.split('. ')
126
+
127
+ # Limit sentences for testing purposes (optional)
128
+ doc1_sentences = doc1_sentences[:50] # Remove this line for full processing
129
+ doc2_sentences = doc2_sentences[:50] # Remove this line for full processing
130
+
131
+ # Load models
132
+ tokenizer, model, sentence_model = load_model()
133
+ if not sentence_model:
134
+ st.error("Failed to load the sentence embedding model.")
135
+ return
136
+
137
+ # Perform sentence comparison
138
+ st.info("Comparing sentences, this may take a moment...")
139
+ similar_sentences = compare_sentences(doc1_sentences, doc2_sentences, sentence_model)
140
+
141
+ # Display results
142
+ st.header("Comparative Analysis Results")
143
+ st.write(f"Number of sentences in Document 1: {len(doc1_sentences)}")
144
+ st.write(f"Number of sentences in Document 2: {len(doc2_sentences)}")
145
+
146
+ if similar_sentences:
147
+ st.success(f"Found {len(similar_sentences)} similar sentences!")
148
+
149
+ # Prepare table for similar words
150
+ table_data = []
151
+ for match in similar_sentences:
152
+ doc1_index, doc2_index, score, sent1, sent2 = match
153
+ similar_words = find_similar_words(sent1, sent2)
154
+ similar_words_str = ", ".join([f"({w1}, {w2})" for w1, w2 in similar_words])
155
+ table_data.append([f"Sentence {doc1_index + 1}", f"Sentence {doc2_index + 1}", score, similar_words_str])
156
+
157
+ # Create a DataFrame for display
158
+ comparison_df = pd.DataFrame(table_data, columns=["Document 1 Sentence", "Document 2 Sentence", "Similarity Score", "Similar Words/Synonyms"])
159
+ st.table(comparison_df)
160
+ else:
161
+ st.info("No significantly similar sentences found.")
162
+ else:
163
+ st.warning("Please upload two documents to compare.")
164
+
165
+ if __name__ == "__main__":
166
+ main()