Spaces:
Runtime error
Runtime error
File size: 7,054 Bytes
da22f13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from sentence_transformers import SentenceTransformer, util
import numpy as np
import requests
import gradio.themes as grthemes
import config
# ----------------------
# Paraphrasing Model Setup
# ----------------------
PARAPHRASE_MODEL_NAME = "Vamsi/T5_Paraphrase_Paws"
paraphrase_tokenizer = AutoTokenizer.from_pretrained(PARAPHRASE_MODEL_NAME)
paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained(PARAPHRASE_MODEL_NAME)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
paraphrase_model = paraphrase_model.to(device)
# ----------------------
# Semantic Similarity Model
# ----------------------
similarity_model = SentenceTransformer('all-MiniLM-L6-v2')
# ----------------------
# Tone Templates
# ----------------------
tone_templates = {
"Academic": "Paraphrase the following text in a formal, academic tone:",
"Casual": "Paraphrase the following text in a casual, conversational tone:",
"Friendly": "Paraphrase the following text in a friendly, approachable tone:",
"Stealth": "Paraphrase the following text to bypass AI detectors and sound as human as possible:",
}
# ----------------------
# Paraphrasing Function
# ----------------------
def paraphrase(text, tone):
prompt = tone_templates[tone] + " " + text
input_ids = paraphrase_tokenizer.encode(prompt, return_tensors="pt", max_length=256, truncation=True).to(device)
outputs = paraphrase_model.generate(
input_ids,
do_sample=True,
top_k=120,
top_p=0.95,
temperature=0.7,
repetition_penalty=1.2,
max_length=256,
num_return_sequences=1
)
paraphrased = paraphrase_tokenizer.decode(outputs[0], skip_special_tokens=True)
return paraphrased
# ----------------------
# Semantic Similarity Function
# ----------------------
def semantic_similarity(text1, text2):
emb1 = similarity_model.encode(text1, convert_to_tensor=True)
emb2 = similarity_model.encode(text2, convert_to_tensor=True)
sim = util.pytorch_cos_sim(emb1, emb2).item()
return sim
# ----------------------
# Real AI Detection (Winston AI API)
# ----------------------
def check_ai_score(text):
api_key = config.WINSTON_AI_API_KEY
api_url = config.WINSTON_AI_API_URL
if not api_key:
return None, "No API key set. Please add your Winston AI API key to config.py."
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {"text": text, "sentences": False}
try:
response = requests.post(api_url, headers=headers, json=data, timeout=30)
if response.status_code == 200:
result = response.json()
# Winston AI returns a 'score' (0-100, higher = more human)
score = result.get("score", None)
if score is not None:
ai_prob = 1.0 - (score / 100.0)
return ai_prob, None
else:
return None, "No score in Winston AI response."
else:
return None, f"Winston AI error: {response.status_code} {response.text}"
except Exception as e:
return None, f"Winston AI exception: {str(e)}"
# ----------------------
# Humanization Score & Rating
# ----------------------
def humanization_score(sim, ai_prob):
# Lower similarity and lower AI probability = more human
score = (1.0 - sim) * 0.5 + (1.0 - ai_prob) * 0.5
return score
def humanization_rating(score):
if score < 0.7:
return f"⚠️ Still AI-like ({score:.2f})"
elif score < 0.85:
return f"👍 Acceptable ({score:.2f})"
else:
return f"✅ Highly Humanized ({score:.2f})"
# ----------------------
# Main Processing Function
# ----------------------
def process(text, tone):
if not text.strip():
return "", "", 0.0, "", 0.0, ""
# Pre-humanization AI detection
pre_ai_prob, pre_err = check_ai_score(text)
if pre_ai_prob is None:
return "", f"AI Detection Error: {pre_err}", 0.0, "", 0.0, ""
# Paraphrase
try:
paraphrased = paraphrase(text, tone)
except Exception as e:
return f"[Paraphrasing error: {str(e)}]", "", 0.0, "", 0.0, ""
# Post-humanization AI detection
post_ai_prob, post_err = check_ai_score(paraphrased)
if post_ai_prob is None:
return paraphrased, f"AI Detection Error: {post_err}", 0.0, "", 0.0, ""
# Semantic similarity
sim = semantic_similarity(text, paraphrased)
# Humanization score
score = humanization_score(sim, post_ai_prob)
rating = humanization_rating(score)
ai_score_str = f"Pre: {100*(1-pre_ai_prob):.1f}% human | Post: {100*(1-post_ai_prob):.1f}% human"
return (
paraphrased, # gr.Textbox (string)
ai_score_str, # gr.Markdown (string)
sim, # gr.Number (float)
rating, # gr.Markdown (string)
score * 100, # gr.Number (float)
""
)
# ----------------------
# Gradio UI
# ----------------------
custom_theme = grthemes.Base(
primary_hue="blue",
secondary_hue="blue",
neutral_hue="slate"
)
with gr.Blocks(theme=custom_theme, title="AI Humanizer - Made by Taha") as demo:
gr.Markdown("""
# 🧠 AI Humanizer
<div style='display:flex;justify-content:space-between;align-items:center;'>
<span style='font-size:1.2em;color:#7bb1ff;'>Rewrite AI text to sound 100% human</span>
<span style='font-weight:bold;color:#7bb1ff;'>Made by Taha</span>
</div>
""", elem_id="header")
with gr.Row():
with gr.Column():
text_in = gr.Textbox(label="Paste AI-generated text here", lines=8, placeholder="Paste your text...", elem_id="input-box")
tone = gr.Dropdown(["Academic", "Casual", "Friendly", "Stealth"], value="Stealth", label="Tone Selector")
btn = gr.Button("Humanize", elem_id="humanize-btn")
with gr.Column():
text_out = gr.Textbox(label="Humanized Output", lines=8, interactive=False, elem_id="output-box")
ai_scores = gr.Markdown("", elem_id="ai-scores")
sim_score = gr.Number(label="Similarity (0=very different, 1=very similar)", interactive=False)
rating = gr.Markdown("", elem_id="rating")
human_score = gr.Number(label="Humanization Score (%)", interactive=False)
btn.click(
process,
inputs=[text_in, tone],
outputs=[text_out, ai_scores, sim_score, rating, human_score, gr.Textbox(visible=False)],
api_name="humanize"
)
gr.Markdown("""
<div style='text-align:center;color:#7bb1ff;margin-top:2em;'>
<b>Made by Taha</b> | Free for unlimited use | Optimized for students and creators
</div>
""", elem_id="footer")
demo.launch() |