Update app.py
Browse files
app.py
CHANGED
@@ -1,119 +1,133 @@
|
|
|
|
1 |
import torch
|
2 |
import torch.nn.functional as F
|
3 |
import gradio as gr
|
4 |
-
|
5 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
# Dictionary of available models with their image sizes
|
8 |
MODELS = {
|
9 |
-
"CLIP ViT-B/32":
|
10 |
-
"CLIP ViT-B/16":
|
11 |
-
"CLIP ViT-L/14":
|
12 |
-
"CLIP ViT-L/14@
|
13 |
-
"SigLIP Large
|
14 |
-
"SigLIP Base
|
15 |
-
"SigLIP Large
|
16 |
}
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
models[model_name] = CLIPModel.from_pretrained(model_path).to("cuda")
|
25 |
-
processors[model_name] = CLIPProcessor.from_pretrained(model_path)
|
26 |
-
elif model_type == "siglip":
|
27 |
-
models[model_name] = AutoModel.from_pretrained(model_path).to("cuda")
|
28 |
-
processors[model_name] = AutoProcessor.from_pretrained(model_path)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
@spaces.GPU
|
32 |
-
def calculate_score(image, text, model_name):
|
33 |
-
labels = text.split(";")
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
# Calculate embeddings
|
48 |
with torch.no_grad():
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
results_dict = {label: float(score) for label, score in zip(labels, similarities)}
|
75 |
-
return results_dict
|
76 |
-
|
77 |
-
|
78 |
-
with gr.Blocks() as demo:
|
79 |
-
gr.Markdown("# Multi-Model CLIP and SigLIP Score")
|
80 |
-
gr.Markdown(
|
81 |
-
"Calculate the score (cosine similarity) between the given image and text descriptions using different CLIP and SigLIP model variants"
|
82 |
-
)
|
83 |
|
84 |
with gr.Row():
|
85 |
-
|
86 |
-
|
87 |
|
88 |
with gr.Row():
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
92 |
)
|
93 |
|
94 |
-
def
|
95 |
-
|
96 |
-
return None
|
97 |
-
return calculate_score(image, text, model_name)
|
98 |
-
|
99 |
-
inputs = [image_input, text_input, model_dropdown]
|
100 |
-
outputs = output_label
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
model_dropdown.change(fn=process_inputs, inputs=inputs, outputs=outputs)
|
105 |
|
106 |
gr.Examples(
|
107 |
examples=[
|
108 |
-
[
|
109 |
-
|
110 |
-
|
111 |
-
"CLIP ViT-B/16",
|
112 |
-
]
|
113 |
],
|
114 |
-
|
115 |
-
|
116 |
-
outputs=outputs,
|
117 |
)
|
118 |
|
119 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
import torch
|
3 |
import torch.nn.functional as F
|
4 |
import gradio as gr
|
5 |
+
import spaces # ← keep this!
|
6 |
+
from transformers import (
|
7 |
+
CLIPProcessor,
|
8 |
+
CLIPModel,
|
9 |
+
SiglipProcessor, # transformers ≥ 4.40
|
10 |
+
SiglipModel,
|
11 |
+
)
|
12 |
+
|
13 |
+
# ---------------------------------------------------------------------
|
14 |
+
# 1. CONFIG
|
15 |
+
# ---------------------------------------------------------------------
|
16 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
|
|
|
18 |
MODELS = {
|
19 |
+
"CLIP ViT-B/32": ("openai/clip-vit-base-patch32", 224, "clip"),
|
20 |
+
"CLIP ViT-B/16": ("openai/clip-vit-base-patch16", 224, "clip"),
|
21 |
+
"CLIP ViT-L/14": ("openai/clip-vit-large-patch14", 224, "clip"),
|
22 |
+
"CLIP ViT-L/14@336": ("openai/clip-vit-large-patch14-336", 336, "clip"),
|
23 |
+
"SigLIP Large-256": ("google/siglip-large-patch16-256", 256, "siglip"),
|
24 |
+
"SigLIP Base-384": ("google/siglip-base-patch16-384", 384, "siglip"),
|
25 |
+
"SigLIP Large-384": ("google/siglip-large-patch16-384", 384, "siglip"),
|
26 |
}
|
27 |
|
28 |
+
# ---------------------------------------------------------------------
|
29 |
+
# 2. LAZY MODEL LOADING
|
30 |
+
# ---------------------------------------------------------------------
|
31 |
+
_models, _processors = {}, {}
|
32 |
|
33 |
+
def _load_model(name: str):
|
34 |
+
path, _, kind = MODELS[name]
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
kwargs = dict(
|
37 |
+
low_cpu_mem_usage=False, # avoid meta-device bug
|
38 |
+
torch_dtype=torch.float16, # faster & smaller
|
39 |
+
)
|
40 |
+
|
41 |
+
if kind == "clip":
|
42 |
+
model = CLIPModel.from_pretrained(path, **kwargs).to(DEVICE)
|
43 |
+
processor = CLIPProcessor.from_pretrained(path)
|
44 |
+
else:
|
45 |
+
model = SiglipModel.from_pretrained(path, **kwargs).to(DEVICE)
|
46 |
+
processor = SiglipProcessor.from_pretrained(path)
|
47 |
+
|
48 |
+
model.eval()
|
49 |
+
return model, processor
|
50 |
|
51 |
+
def get_model(name: str):
|
52 |
+
if name not in _models:
|
53 |
+
_models[name], _processors[name] = _load_model(name)
|
54 |
+
return _models[name], _processors[name]
|
55 |
+
|
56 |
+
# ---------------------------------------------------------------------
|
57 |
+
# 3. SCORING FUNCTION (runs on GPU in Spaces)
|
58 |
+
# ---------------------------------------------------------------------
|
59 |
@spaces.GPU
|
60 |
+
def calculate_score(image, text: str, model_name: str):
|
61 |
+
labels = [t.strip() for t in text.split(";") if t.strip()]
|
62 |
+
if not labels:
|
63 |
+
return {}
|
64 |
+
|
65 |
+
model, processor = get_model(model_name)
|
66 |
+
kind = MODELS[model_name][2]
|
67 |
+
|
68 |
+
inputs = processor(
|
69 |
+
text=labels,
|
70 |
+
images=image,
|
71 |
+
padding=True,
|
72 |
+
return_tensors="pt",
|
73 |
+
).to(DEVICE)
|
74 |
+
|
|
|
75 |
with torch.no_grad():
|
76 |
+
if kind == "clip":
|
77 |
+
out = model(**inputs)
|
78 |
+
img_emb = out.image_embeds
|
79 |
+
txt_emb = out.text_embeds
|
80 |
+
else:
|
81 |
+
img_emb = model.get_image_features(pixel_values=inputs["pixel_values"])
|
82 |
+
txt_emb = model.get_text_features(
|
83 |
+
input_ids=inputs["input_ids"],
|
84 |
+
attention_mask=inputs["attention_mask"],
|
85 |
+
)
|
86 |
+
|
87 |
+
img_emb = F.normalize(img_emb, p=2, dim=-1)
|
88 |
+
txt_emb = F.normalize(txt_emb, p=2, dim=-1)
|
89 |
+
|
90 |
+
scores = (txt_emb @ img_emb.T).squeeze(1) # cosine
|
91 |
+
if kind == "siglip":
|
92 |
+
scores = torch.sigmoid(scores) # paper’s choice
|
93 |
+
|
94 |
+
return {lbl: float(score.clamp(0, 1)) for lbl, score in zip(labels, scores.cpu())}
|
95 |
+
|
96 |
+
# ---------------------------------------------------------------------
|
97 |
+
# 4. GRADIO UI
|
98 |
+
# ---------------------------------------------------------------------
|
99 |
+
with gr.Blocks(title="CLIP / SigLIP Image-Text Similarity") as demo:
|
100 |
+
gr.Markdown("## Compare an image with multiple text prompts")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
with gr.Row():
|
103 |
+
image_in = gr.Image(type="pil", label="Image")
|
104 |
+
score_out = gr.Label(label="Similarity (0‒1)")
|
105 |
|
106 |
with gr.Row():
|
107 |
+
text_in = gr.Textbox(
|
108 |
+
label="Text prompts (use ‘;’ to separate)",
|
109 |
+
placeholder="a cat; a flying cat; a dog",
|
110 |
+
)
|
111 |
+
model_in = gr.Dropdown(
|
112 |
+
choices=list(MODELS.keys()),
|
113 |
+
value="CLIP ViT-B/16",
|
114 |
+
label="Model",
|
115 |
)
|
116 |
|
117 |
+
def infer(img, txt, mdl):
|
118 |
+
return calculate_score(img, txt, mdl) if img and txt.strip() else {}
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
+
for comp in (image_in, text_in, model_in):
|
121 |
+
comp.change(infer, [image_in, text_in, model_in], score_out)
|
|
|
122 |
|
123 |
gr.Examples(
|
124 |
examples=[
|
125 |
+
["cat.jpg",
|
126 |
+
"a cat stuck in a door; a cat jumping; a dog",
|
127 |
+
"CLIP ViT-B/16"],
|
|
|
|
|
128 |
],
|
129 |
+
inputs=[image_in, text_in, model_in],
|
130 |
+
outputs=score_out,
|
|
|
131 |
)
|
132 |
|
133 |
+
demo.launch()
|