File size: 1,927 Bytes
b580698
 
1921d36
b580698
 
 
 
 
 
 
 
 
 
 
1921d36
 
 
 
b580698
 
1921d36
 
b580698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import re
import os
#from dotenv import load_dotenv
import json
import gradio as gr
import random 
import time 
import requests

from transformers import BertModel, BertTokenizerFast, AdamW
import tensorflow as tf



#load_dotenv(override=True)
#if not os.getenv("HF_API_KEY"):
#    raise ValueError("HF_API_KEY must be set")
#hf_key = os.getenv('HF_API_KEY')

API_URL = "https://api-inference.huggingface.co/models/t4ai/distilbert-finetuned-t3-qa"
#headers = {"Authorization": "Bearer " + hf_key }
headers = {}

def query_model(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.json()


# contruct UI using Gradio
_booted = False
with gr.Blocks() as demo:
    
    with gr.Row():
        with gr.Column(scale=1):
            context = gr.Textbox(label="Document Text", lines=25)
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(label="T3Soft Bot", value=[(None, "Welcome! I am your QA assistant."), (None, "Please paste your document content in the panel to the left."), (None, "Then submit questions below!")])
            msg = gr.Textbox(label="Ask your question")
            clear = gr.ClearButton([msg, chatbot])
            _chatbot = chatbot
    
    def respond(message, context, chat_history):
        
        if(len(context) == 0):
            bot_message = "Hm, I don't see any document text, please paste in the box on the left."
        else:    
            query_bot = query_model({"inputs": {"question": message, "context": context}})
            if(len(query_bot)):
                bot_message = query_bot['answer']
            else:
                bot_message = "I'm having trouble with this question, please try again."
        
        
        chat_history.append((message, bot_message))
        time.sleep(2)
        return "", context, chat_history

    msg.submit(respond, [msg, context, chatbot], [msg, context, chatbot])

demo.launch()