Spaces:
Sleeping
Sleeping
File size: 5,271 Bytes
a5f0152 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
from fastapi import FastAPI, Form, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, FileResponse
from diffusers import StableDiffusionPipeline
import torch
import uuid
import base64
import io
from PIL import Image
import os
# Initialize FastAPI app
app = FastAPI(title="PromptAgro Image Generator API")
# Add CORS middleware to allow frontend connections
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, specify your frontend domains
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Load Stable Diffusion LCM model (your original approach)
print("π Loading Stable Diffusion Model...")
model_id = "rupeshs/LCM-runwayml-stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda" if torch.cuda.is_available() else "cpu")
print("β
Model Loaded.")
@app.get("/")
async def root():
"""Health check endpoint"""
return {
"status": "alive",
"service": "PromptAgro Image Generator",
"model_loaded": True,
"device": "cuda" if torch.cuda.is_available() else "cpu"
}
@app.post("/generate/")
async def generate_image(prompt: str = Form(...)):
"""
Generate product packaging image from input prompt.
Returns image file directly (your original approach).
"""
print(f"ποΈ Generating image for prompt: {prompt}")
# Generate image (your original approach)
image = pipe(prompt).images[0]
# Save image to temp file (your original approach)
filename = f"/tmp/{uuid.uuid4().hex}.png"
image.save(filename)
print(f"π¦ Image saved to {filename}")
# Return image file as response (your original approach)
return FileResponse(filename, media_type="image/png")
@app.post("/generate-json/")
async def generate_image_json(
prompt: str = Form(...),
width: int = Form(512),
height: int = Form(512),
num_inference_steps: int = Form(4), # LCM works well with few steps
guidance_scale: float = Form(1.0) # LCM uses low guidance
):
"""
Generate image and return as JSON with base64 data (for frontend integration).
"""
print(f"ποΈ Generating image for prompt: {prompt}")
try:
# Generate image with parameters optimized for LCM
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale
).images[0]
# Convert image to base64 for JSON response
buffer = io.BytesIO()
image.save(buffer, format='PNG')
img_str = base64.b64encode(buffer.getvalue()).decode()
print("β
Image generated successfully")
return JSONResponse({
"success": True,
"image_data": f"data:image/png;base64,{img_str}",
"prompt_used": prompt,
"dimensions": {"width": width, "height": height},
"steps": num_inference_steps
})
except Exception as e:
print(f"β Generation failed: {e}")
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
@app.post("/generate-packaging/")
async def generate_packaging_specific(
product_name: str = Form(...),
colors: str = Form("green,yellow"),
emotion: str = Form("trust"),
platform: str = Form("farmers-market")
):
"""
Generate packaging with PromptAgro-specific prompt engineering
"""
# Create professional prompt for agricultural packaging
prompt = f"""Professional agricultural product packaging design for {product_name},
modern clean style, {colors.replace(',', ' and ')} color scheme, premium typography,
conveying {emotion}, suitable for {platform}, product photography style,
white background, high quality commercial design, realistic packaging mockup,
professional studio lighting, eco-friendly agricultural branding"""
prompt = prompt.strip().replace('\n', ' ').replace(' ', ' ')
print(f"π¨ Generating packaging for: {product_name}")
print(f"π Using prompt: {prompt}")
try:
# Generate with packaging-optimized settings
image = pipe(
prompt=prompt,
width=768,
height=768,
num_inference_steps=6,
guidance_scale=1.5
).images[0]
# Convert to base64
buffer = io.BytesIO()
image.save(buffer, format='PNG')
img_str = base64.b64encode(buffer.getvalue()).decode()
return JSONResponse({
"success": True,
"image_data": f"data:image/png;base64,{img_str}",
"prompt_used": prompt,
"product_name": product_name,
"generator": "Stable Diffusion LCM",
"cost": "FREE",
"processing_time": "~3-5 seconds"
})
except Exception as e:
print(f"β Packaging generation failed: {e}")
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|