Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,73 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
"""
|
| 5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
def respond(
|
| 11 |
-
message,
|
| 12 |
-
history: list[tuple[str, str]],
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
-
|
| 20 |
-
for val in history:
|
| 21 |
-
if val[0]:
|
| 22 |
-
messages.append({"role": "user", "content": val[0]})
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
-
|
| 26 |
-
messages.append({"role": "user", "content": message})
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
| 42 |
|
| 43 |
"""
|
| 44 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
"""
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
)
|
| 59 |
-
|
| 60 |
-
)
|
| 61 |
-
|
|
|
|
| 62 |
|
| 63 |
if __name__ == "__main__":
|
| 64 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from langchain_core.vectorstores import InMemoryVectorStore
|
| 3 |
+
from langchain.chains import RetrievalQA
|
| 4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 5 |
+
from langchain_groq import ChatGroq
|
| 6 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 7 |
+
from langchain.chains import create_retrieval_chain
|
| 8 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 9 |
|
| 10 |
"""
|
| 11 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 12 |
"""
|
|
|
|
| 13 |
|
| 14 |
+
model_name = "llama-3.3-70b-versatile"
|
| 15 |
+
embeddings = HuggingFaceEmbeddings(
|
| 16 |
+
model_name = "pkshatech/GLuCoSE-base-ja"
|
| 17 |
+
)
|
| 18 |
+
vector_store = InMemoryVectorStore.load(
|
| 19 |
+
"kaihatsu_vector_store", embeddings
|
| 20 |
+
)
|
| 21 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 4})
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
def fetch_response(groq_api_key, user_input):
|
| 25 |
+
chat = ChatGroq(
|
| 26 |
+
api_key = groq_api_key,
|
| 27 |
+
model_name = model_name
|
| 28 |
+
)
|
| 29 |
+
system_prompt = (
|
| 30 |
+
"あなたは便利なアシスタントです。"
|
| 31 |
+
"マニュアルの内容から回答してください。"
|
| 32 |
+
"\n\n"
|
| 33 |
+
"{context}"
|
| 34 |
+
)
|
| 35 |
|
| 36 |
+
prompt = ChatPromptTemplate.from_messages(
|
| 37 |
+
[
|
| 38 |
+
("system", system_prompt),
|
| 39 |
+
("human", "{input}"),
|
| 40 |
+
]
|
| 41 |
+
)
|
| 42 |
+
# ドキュメントのリストを渡せるchainを作成
|
| 43 |
+
question_answer_chain = create_stuff_documents_chain(chat, prompt)
|
| 44 |
+
# RetrieverとQAチェーンを組み合わせてRAGチェーンを作成
|
| 45 |
+
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
|
| 46 |
|
| 47 |
+
response = rag_chain.invoke({"input": user_input})
|
| 48 |
+
return [response["answer"], response["context"][0], response["context"][1]]
|
| 49 |
|
| 50 |
|
| 51 |
"""
|
| 52 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 53 |
"""
|
| 54 |
+
with gr.Blocks() as demo:
|
| 55 |
+
gr.Markdown('''# 「スマート農業技術の開発・供給に関する事業」マスター \n
|
| 56 |
+
「スマート農業技術の開発・供給に関する事業」に関して、公募要領や審査要領を参考にRAGを使って回答します。
|
| 57 |
+
''')
|
| 58 |
+
with gr.Row():
|
| 59 |
+
api_key = gr.Textbox(label="Groq API key")
|
| 60 |
+
with gr.Row():
|
| 61 |
+
with gr.Column():
|
| 62 |
+
user_input = gr.Textbox(label="User Input")
|
| 63 |
+
submit = gr.Button("Submit")
|
| 64 |
+
answer = gr.Textbox(label="Answer")
|
| 65 |
+
with gr.Row():
|
| 66 |
+
with gr.Column():
|
| 67 |
+
source1 = gr.Textbox(label="回答ソース1")
|
| 68 |
+
with gr.Column():
|
| 69 |
+
source2 = gr.Textbox(label="回答ソース2")
|
| 70 |
+
submit.click(fetch_response, inputs=[api_key, user_input], outputs=[answer, source1, source2])
|
| 71 |
|
| 72 |
if __name__ == "__main__":
|
| 73 |
demo.launch()
|