t2ag3 commited on
Commit
df9f17a
·
verified ·
1 Parent(s): 88e1000

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -46
app.py CHANGED
@@ -1,64 +1,73 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
3
 
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
38
 
39
- response += token
40
- yield response
41
 
42
 
43
  """
44
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
  """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
 
62
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from langchain_core.vectorstores import InMemoryVectorStore
3
+ from langchain.chains import RetrievalQA
4
+ from langchain_community.embeddings import HuggingFaceEmbeddings
5
+ from langchain_groq import ChatGroq
6
+ from langchain_core.prompts import ChatPromptTemplate
7
+ from langchain.chains import create_retrieval_chain
8
+ from langchain.chains.combine_documents import create_stuff_documents_chain
9
 
10
  """
11
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
12
  """
 
13
 
14
+ model_name = "llama-3.3-70b-versatile"
15
+ embeddings = HuggingFaceEmbeddings(
16
+ model_name = "pkshatech/GLuCoSE-base-ja"
17
+ )
18
+ vector_store = InMemoryVectorStore.load(
19
+ "kaihatsu_vector_store", embeddings
20
+ )
21
+ retriever = vector_store.as_retriever(search_kwargs={"k": 4})
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
+ def fetch_response(groq_api_key, user_input):
25
+ chat = ChatGroq(
26
+ api_key = groq_api_key,
27
+ model_name = model_name
28
+ )
29
+ system_prompt = (
30
+ "あなたは便利なアシスタントです。"
31
+ "マニュアルの内容から回答してください。"
32
+ "\n\n"
33
+ "{context}"
34
+ )
35
 
36
+ prompt = ChatPromptTemplate.from_messages(
37
+ [
38
+ ("system", system_prompt),
39
+ ("human", "{input}"),
40
+ ]
41
+ )
42
+ # ドキュメントのリストを渡せるchainを作成
43
+ question_answer_chain = create_stuff_documents_chain(chat, prompt)
44
+ # RetrieverとQAチェーンを組み合わせてRAGチェーンを作成
45
+ rag_chain = create_retrieval_chain(retriever, question_answer_chain)
46
 
47
+ response = rag_chain.invoke({"input": user_input})
48
+ return [response["answer"], response["context"][0], response["context"][1]]
49
 
50
 
51
  """
52
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
53
  """
54
+ with gr.Blocks() as demo:
55
+ gr.Markdown('''# 「スマート農業技術の開発・供給に関する事業」マスター \n
56
+ 「スマート農業技術の開発・供給に関する事業」に関して、公募要領や審査要領を参考にRAGを使って回答します。
57
+ ''')
58
+ with gr.Row():
59
+ api_key = gr.Textbox(label="Groq API key")
60
+ with gr.Row():
61
+ with gr.Column():
62
+ user_input = gr.Textbox(label="User Input")
63
+ submit = gr.Button("Submit")
64
+ answer = gr.Textbox(label="Answer")
65
+ with gr.Row():
66
+ with gr.Column():
67
+ source1 = gr.Textbox(label="回答ソース1")
68
+ with gr.Column():
69
+ source2 = gr.Textbox(label="回答ソース2")
70
+ submit.click(fetch_response, inputs=[api_key, user_input], outputs=[answer, source1, source2])
71
 
72
  if __name__ == "__main__":
73
  demo.launch()